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Abstract—Robust adaptive beamforming (RAB) plays a vi-
tal role in modern communications by ensuring the reception
of high-quality signals. This paper proposes a deep learning
approach to robust adaptive beamforming. In particular, we
propose a novel RAB approach where the sample covariance
matrix (SCM) is used as the input of a deep 1D Complex-Valued
Convolutional Neural Network (CVCNN). The network employs
complex convolutional and pooling layers, as well as a Cartesian
Scaled Exponential Linear Unit activation function to directly
compute the nearly-optimum weight vector through the training
process and without prior knowledge about the direction of
arrival of the desired signal. This means that reconstruction of the
interference plus noise (IPN) covariance matrix is not required.
The trained CVCNN accurately computes the nearly-optimum
weight vector for data not used during training. The computed
weight vector is employed to estimate the signal-to-interference
plus noise ratio. Simulations show that the proposed RAB can
provide performance close to that of the optimal beamformer.

Index Terms—Convolutional neural network, Robust adaptive
beamforming, Sample matrix inversion.

I. INTRODUCTION

ADAPTIVE beamforming has applications in a wide range
of signal processing domains, including radar, sonar, and

wireless communication systems. Beamformers provide spatial
information about signals in the presence of different types
of interference [1]. The minimum variance distortionless
response (MVDR) beamformer was proposed to recover the
signal-of-interest (SOI) in the array input while minimizing the
array output power. However, the MVDR beamformer faces
problems in practice due to several reasons, which include
short data records, imprecise assumptions on the models for
the source, environment, and the array steering vector of
the desired signal (DS) [2], [3]. Adaptive beamformers are
quite sensitive to errors caused by an inaccurate estimation of
the covariance matrix, especially when the SOI component
is present in the training data. Hence, various techniques
have been developed to improve the performance of adaptive
beamformers. These Robust adaptive beamforming (RAB)
techniques can be divided into two categories.

First, the conventional approaches, which are based on
diagonal loading [4], [5], the eigenspace-based beamformer
[6], [7], worst-case optimization and estimation with pre-

sumed prior knowledge [8], [9]. RAB methods designed
based on these approaches have disadvantages like their ad
hoc nature, high probability of subspace swap at low signal-
to-noise ratio (SNR) and high computational complexity.

The second category is based on an approach in which the
influence of the SOI component from the sample covariance
matrix (SCM) is removed by reconstructing the interference-
plus-noise (IPN) covariance matrix. In these methods the IPN

covariance matrix is reconstructed based on the Capon or
maximum entropy spectral estimator by integrating over an
angular sector that excludes the direction-of-arrival (DoA) of
the SOI [10]–[20].

More recently, neural networks have been employed to
estimate nearly-optimal weight vectors for beamforming. The
parallel structure of these networks and their ability to learn
non-linear features using activation functions make them an
effective approach for estimating the desired output in the pres-
ence of interference and noise. In [21] a neural network has
been trained on an optimized data set extracted by a modified
adaptive dispersion variant of the invasive weed optimization
algorithm In [22], a radial-basis-function network has been
employed to estimate the weight vector of a weather radar
antenna array in the presence of interference. In [23], a deep
neural network has been employed to estimate the DoA of
DSs. A model-aware deep learning strategy for ultrasound
image reconstruction has been proposed in [24] which utilizes
the knowledge of minimum variance beamforming. Two CNNs
based on the parallel processing ability of neural networks
with identical structures have been designed to estimate beam-
former weights without knowing the DoAs of signals in [25].

However, all these methods are designed based on Real-
Valued Convolutional Neural Networks (RVCNN). Recently,
[26] reported that RVCNNs do not provide the best result

when applied to complex-valued (CV) problems. A Complex-
Valued Convolutional Neural Network (CVCNN) seems a
more natural choice to learn from CV features because layers
of CVCNNs can perform complex filtering operations. No-
tably, CVCNNs are more adapted to extract phase information,
which could be helpful to retrieve features of signals. The
results in [26] show that CVCNNs perform better than their
counterpart RVCNNs by presenting a larger mean and median
and lower variance than RVCNNs.

The contributions of this paper are two-fold: first, we in-
troduce a novel deep one-dimensional (1D) CVCNN for RAB
that can compute nearly-optimal beamformers accurately using
SCM elements and without requiring the DoA of the SOI or
interference signals. Second, we show that applying CVCNNs
to CV problems is a better approach than RVCNNs for weight
vector estimation due to complex filtering operations. In con-
trast to prior works, we address the problem of estimating the
weight vector as a regression problem by applying a complex
model to SCM without separating real and imaginary parts.
The network employs complex convolutional and pooling
layers, as well as Cartesian Scaled Exponential Linear Unit
(CSeLU) activation function to directly compute the weight
vector through the training process. The proposed CVCNNs
algorithm is capable of creating notches in the directions of the
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interference with sufficient depths so that interference signals
can be effectively suppressed while avoiding the reconstruction
of the interference-plus-noise covariance matrix.

II. PROBLEM BACKGROUND

Consider a uniform linear array of M omnidirectional
sensors with interelement spacing d. The receiving signals are
narrowband plane waves impinging from angle θ. The array
observation vector at time t can be modeled as

x(t) = s(t)a(θs) + v(t), (1)

where the signals xl(t) observed at each antenna are col-
lected in the vector x(t) = [x0(t) . . . xM−1(t)]

T , and (·)T
is the transpose while v(t), s(t) denote the sum of the
interference plus noise and the waveform of the SOI, re-
spectively. The SV corresponding to the DoA of the SOI

is, a(θs) =
[
1, e−j 2π

λ d sin θs , · · · , e−j(M−1) 2π
λ d sin θs

]T
,

where λ is the wavelength. Assuming that the SV a(θs) is
known, then for a given beamformer weight vector w, the
beamformer performance is measured using the output signal-
to-interference-plus-noise ratio (SINR) as follows

SINR = σ2
s |wHa(θs)|2

/
wHRi+nw, (2)

where σ2
s is the DS power, Ri+n is the IPN covariance matrix,

and (·)H stands for Hermitian transpose. The weight vector is
found from the maximum of the SINR and it is equivalent to

min
w

wHRi+n w s.t. wHa(θs) = 1. (3)

The solution to (3) yields the optimal beamformer given by

wopt = ζR−1
i+na(θs). (4)

where ζ is a scale factor. When ζ = σ2
s , the weights correspond

to spatial Wiener filter and when ζ = aH(θs)R
−1
i+na(θs),

the MVDR weights are obtained. Since in practice, the exact
IPN covariance matrix Ri+n is unavailable even in signal-
free applications, they are replaced by the SCM, R̂ =
(1/K)

∑K
t=1 x(t)x

H(t), where K is the number of snapshots.
When the covariance matrix of interference and noise is
replaced by the sample matrix obtained using a set of train-
ing data, the adaptive version of the MVDR beamformer is
referred to as the sample matrix inversion (SMI) beamformer.
We focus on the SMI beamformer throughout this work.

III. THE PROPOSED CVCNN ALGORITHM

In the SMI beamformer, the amount of required data is
necessary to achieve a desired level of performance. In fact,
the basic reason that an SMI-based adaptive beamformer can
not converge rapidly is the dispersion of noise eigenvalues
under the condition of few snapshots and high SNR. Un-
der these conditions, the performance of SMI-based adaptive
beamformer decreases seriously.

To improve the robustness of the beamformer with a poorly
conditioned SCM, the diagonal loading [27] technique has
been exploited to suppress pattern distortion. Generally, di-
agonal loading techniques can reduce the influence of small

eigenvalues on the noise beam and improve the pattern dis-
tortion, but the determination of the loading value is always
a difficult problem to address [28]. Therefore, in this work,
we propose a novel deep neural network-based method using
the SCM with no prior processing. The network is trained to
learn the dependency of the optimal weights on the properties
of the received signals at different DoAs. The trained network
can compute a nearly-optimal weight vector without requiring
knowledge about the DoA of the DS. The architecture of the
CNN and the necessary input/output pairs used for beamform-
ing are detailed in the following sections.

A. Architecture of the CVCNN

CVCNN can be considered as an extension of the conven-
tional RVCNNs with neurons and weights that can handle
complex values. Just like RVCNNs, a CVCNN includes an
input layer followed by several alternations of convolutional
and pooling layers, fully connected layers, and a regression or
classification layer. Phase introduction is the main advantage
of CV operations over the real-valued networks while process-
ing a signal. A typical process of feature extraction in CNNs
is a convolution layer with nonlinear activation followed by
a pooling layer. Convolution layers perform convolution with
multiple learnable filters in parallel and results are fed into
nonlinear activation functions to generate feature maps. Then,
a pooling function reduces spatial dimension by downsampling
the feature maps. In a CVCNN framework that suits sensor
array processing, all such operations should be based on com-
plex values. Below, we discuss the most important elements
of the proposed 1D CVCNN.

1) Convolution: Hidden units of the convolutional layers
are connected to the feature maps of the previous layer through
a complex weight matrix known as kernel. The units are
convolved with the weight matrix, and then passed through
a nonlinear activation function. The weights are chosen so
that they minimize a certain loss function. In the CV convo-
lutional layer, the RV convolutional operation is generalized
to the complex domain. Let us define a convolution operation
between the input x(t) and a kernel f by x(t)⊛ f where both
x(t) and f are complex vectors expressed as follows:

x(t) = xr(t) + jxc(t) , f = fr + jfc (5)

Here, xr(t), xc(t), fc, and fc are real-valued vectors. So the
the CV convolution operation can be formulated as x(t)⊛f =
(xr(t)⊛ fr − xc(t)⊛ fc) + j(xc(t)⊛ fr + xr(t)⊛ fc) which
can in turn be represented as:[

R(x(t)⊛ f)
J(x(t)⊛ f)

]
=

[
xr(t) −xc(t)
xc(t) xr(t)

]
⊛

[
fr
fc

]
(6)

where R(.) and J(.) represent the real and imaginary parts of
a complex number. According to equation 6, a CV convolution
operation with filter f = fr + jfc can be considered as
an RV convolution with the following two kernels: [fr,−fc]
and [fc, fr]. Consequently, a CV convolutional layer can be
considered as an extended version of a RV convolutional layer
with twice as many kernels.
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2) Activation function: Activation functions are nonlinear
functions that characterize the behavior of a neural network.
The rectified linear unit function is the most used example
in RVCNNs and it can be defined as max(0, x). To stay
close to the real case, the Complex Rectified Linear Unit
(CReLU) [29] should be defined for some connected A ⊆ C.
Then the output is max(0, z) for z ∈ A, where the max
operator should be interpreted as follows:

CReLU(z) = max(0, z) =

{
z if R(z), J(z) ≥ 0

0 otherwise
(7)

which is used in all convolutional layers of the proposed
method. The fully connected layer uses CSeLU [30] as an
activation function that can be formulated as:

CSeLU(z) = β

{
z if R(z), J(z) > 0

αez − α if R(z), J(z) ≤ 0
(8)

with z being a complex input of the function, β > 1 to have
a slope greater than one for positive inputs [30] and α > 0
to control the value to which the function saturates in case of
negative inputs [31].

Various approaches to apply RVCNNs to CV problems have
been investigated. For instance, [32] separates and rearranges
the real and imaginary parts into a single vector that is em-
ployed later as the input of the RVCNN. Recently, Barrachina
et al. [26] reported that CVCNN shows higher accuracy
and less overfitting than RVCNN regardless of the model
architecture and hyper-parameters. Therefore, to solve the
problem in the complex domain, we propose a sixteen-layer
CVCNN where all layers, including convolution, pooling, and
dense layers perform complex filtering operations.

The proposed network is a deep 1D CVCNN that starts
with an input layer. The size of input nodes for this layer
and the data fed to this layer is discussed in more detail
in section III-B. The input layer is followed by the first
complex convolution layer that has 8 kernels of size 3 and
a complex average pooling layer with kernel size 2 and stride
2. The convolution and pooling layer is repeated then by
having 16, 32, 64, and 128 kernels of size 3 and exact
same pooling layers. Next, two convolution layers with 256
filters are added where the output is squeezed to a complex
dense layer. This is a followed by a drop out layer with rate
0.25 to avoid the overfitting problem and a general average
pooling layer. Finally, a fully connected layer with 50 nodes
is employed to extract the best set of features and pass them to
a regression layer which applies Cartesian Hyperbolic Tangent
for prediction. The proposed CVCNN is shown in Fig. 1. We
specifically propose this configuration to show we can achieve
deeper architectures using CV networks. Also, the number of
kernels is increased toward the final layers so the network
is able to capture low-level features in the first layers and
elaborate complex features in the final ones.

B. Training and Testing

For generating the input vectors of the CVCNN, we consider
two scenarios. First, we generate an input vector where all
the elements of the sample covariance matrix R̂ are reshaped

Fig. 1. Block diagram of the proposed CVCNN architecture

by concatenating the rows into a vector of size 1 × M2 as
rR = [R̂11, · · · , R̂1M R̂m1, · · · , R̂mM · · · R̂M1, · · · , R̂MM ].
From here on, we call this network CVCNN-SCM. Where as
in the second scenario, an input vector containing only the
lower triangular elements of the sample covariance matrix
(LTSCM) are reshaped to a vector of size 1 × M(M+1)

2 as
rLR = [R̂11 · · · R̂m1, · · · , R̂mm · · · R̂M1, · · · , R̂MM ].

We refer to this network as CVCNN-LTSCM. These two
scenarios are studied to show that using only lower triangular
elements of the SCM suffices to achieve high performance
in a reasonable computational time by reducing the data
redundancy. In order to train the networks in a supervised
learning manner, one requires pairs of inputs and ground truth
labels. The accuracy of the networks significantly depends
on the generated labels. So as to generate the corresponding
ground truth labels w of each sample r, we proceed as follows:

w = R̂−1a(θ̂s)
/
aH(θ̂s)R̂

−1a(θ̂s) (9)

which is used as training label and has the size M × 1. Here,
a(θ̂s) is the assumed DS steering vector. It is important to
mention that input vectors rR and rLR and labels generated
by (9) are normalized before applying to the network.

The network should be fully trained, and converge to
optimum weights by minimizing loss function based on Mean
Absolute Error (MAE) while using early stopping criteria. At
the performance stage, the trained network can be directly
used to produce weight vectors for real-time beamforming. We
produced 4500 sample pairs of (rR/LR,w) for the training
data from a Gaussian distribution of zero mean and unit
variance while in order to assess the generalization ability
of the model considering unseen data, 500 sample pairs for
test are generated with a Gaussian distribution of zero mean
and variance 4. The training data is then used in a 5-fold
cross-validation fashion to avoid overfitting. The network is
computationally trained for 100 epochs with various optimizer
algorithms, namely, SGD, Nadam, RMS, and ADAM. We
illustrate the learning curve for SNR −10 dB in Fig 3. The
learning curve represents the correct convergence procedure
and generalization capabilities of the model. In Table I MAE
values are compared for RVCNN and CVCNN-LTSCM under
two snapshot scenarios and using different number of samples.
We also performed a case study using different optimization
metrics like mean square error, MAE, and accuracy. The best
performance was achieved by using Adam while optimizing
MAE and accuracy.

In all experiments, the learning rate and batch size were
set to 1e-04 and 4, respectively. We employed an adaptive
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Fig. 2. (a) Output SINR versus SNR for 100 snapshots; (b) Output SINR versus SNR for 400 snapshots; (c) Normalized Beampattern

snapshots 500 samples 5000 samples
CVCNN RVCNN CVCNN RVCNN

100 0.099 0.186 0.038 0.157
400 0.086 0.157 0.021 0.135
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Fig. 3. Learning Curve of the CVCNN-LTSCM model with Adam optimizer

exponential learning rate decay with a factor of 0.96 and decay
step 10. In order to achieve the best performance in a reason-
able computational time, we employ early stopping criteria
where for some SNRs an under-trained CVCNN occurred. As
mentioned before, the test data are generated from a Gaussian
distribution with zero mean and variance 4. The trained models
predict the near-optimum weight vectors for the unseen data
(test). We use the average predicted weight vector to calculate
the SINR values.

IV. SIMULATIONS

In this section, a ULA with M = 10 omnidirectional sensors
is used. The additive noise is modeled as spatially white
Gaussian with zero mean and unit variance. The angles of
incidence of the DS and two interfering sources are θ̄s = −5◦,
20◦ and 50◦ respectively. The input interference to noise ratios
of the two interferers are both set to 20 dB. The proposed
CVCNN-SCM and CVCNN-LTSCM methods are compared
with the RCB method in [27], the loaded sample matrix
inverse (LSMI), the RVCNN method in [32], the beamformer
in [16] (IPN-MEPS), the method in [17] (IPN-SUB) and the
algorithm in [33] (IPN-SV). For the IPN covariance matrix
reconstruction methods, the angular sector of the DS is set

to [θ̄s − 4◦, θ̄s + 4◦] where the interference angular sector is
[−90◦, θ̄s − 4◦) ∪ (θ̄s + 4◦, 90◦]. The energy percentage ρ set
as 0.9 in IPN-SUB. The SINR performance of the proposed
methods is assessed versus the SNRs. Fig. 2(a) demonstrates
the performance for 100 snapshots while Fig. 2(b) illustrates
the SINR performance for 400 snapshots. It is seen that the
proposed methods attain the optimal output SINR in both
low and high SNRs and for different numbers of snapshots.
The excellent performance of CVCNN-SCM and CVCNN-
LTSCM is due to the extraction of high-level features during
the learning procedure. This enhances the robustness of the
proposed methods to estimate the weight vectors regardless of
the number of snapshots. However, RVCNNs do not provide
the best results when applied to complex-valued problems
even after increasing the number of snapshots from 100 to
400 since it is not adapted to extract phase information,
which could be helpful to retrieve features of sensor array
signals. To demonstrate the IPN suppression capability of
the proposed algorithms, we plot the normalized beampattern
in comparison with those of the LSMI, RCB, and the RVCNN
[32]. It is assumed that the input SNR and the number of

snapshots are fixed at 10 dB and 400, respectively. Fig. 2(c)
shows the normalized beampattern plots. The CVCNN-SCM
and CVCNN-LTSCM beampatterns indicate that the desired
directional response shaping has been achieved with lower
side-lobe levels. Moreover, it demonstrates that the proposed
methods are able to recover the desired array steering vector
by pointing its main-lobe in the DS direction while the
interference signals are suppressed with deep nulls.

V. CONCLUSION

In this letter, a deep learning approach to RAB is proposed
to compute nearly optimal beamformers. Unlike prior works,
we addressed the drawback of the sample matrix inversion by
estimating the weight vector as a regression problem using
a 1D CVCNN. Notably, this is achieved without requiring
the knowledge of the number of sources, the corresponding
DoA, or addressing the weight vector estimation as a real-
valued problem. Simulation results show the performance of
the proposed 1D CVCNN algorithm is robust to short data
records and outperforms the state-of-the-art in the literature.
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