
1

Distributed Universal Adaptive Networks
Cassio G. Lopes , Senior Member, IEEE, Vı́tor H. Nascimento, Senior Member, IEEE, Luiz F. O.

Chamon, Member, IEEE

Abstract—Adaptive networks (ANs) are effective real time
techniques to process and track events observed by sensor
networks and, more recently, to equip Internet of Things (IoT)
applications. ANs operate over nodes equipped with collaborative
adaptive filters that solve distributively an estimation problem
common to the whole network. However, they do not guarantee
that nodes do not lose from cooperation, as compared to its
non-cooperative operation; that poor nodes are rejected and
exceptional nodes estimates reach the entire network; and that
performance is uniform over all nodes. In order to enforce
such properties, this work introduces the concept of distributed
universal estimation, which encompasses the new concepts of
local universality, global universality and universality with re-
spect to the non-cooperative operation. We then construct a new
cooperation protocol that is proven to be distributively universal,
outperforming direct competitors from the literature, as shown by
several simulations. Mean and mean-square analytical models are
developed, with good agreement between theory and simulations.

Index Terms—Adaptive Networks, Distributed Adaptive Pro-
cessing, Sensor Networks, Internet of Things, Universal Estima-
tion.

I. INTRODUCTION

IN several applications, a network of interconnected agents
is in charge of observing events in a field of interest, usually

performing event-related tasks. Such events leave a space-
time signature that may be registered by a number of sensors
properly placed throughout the geographical area where the
events take place [1].

Applications of this framework are plentiful: detect a signal
of interest; estimate physical quantities, such as temperature,
pressure or wind velocity, solar incidence, the position and
speed of a target, the spectrum of signals; network synchro-
nization; identify structural failures, among others [2]–[5],
[6]–[8]. In such applications, in the absence of a central
node, an optimization problem common to the entire network
must be solved distributively and cooperation among agents is
either mandatory, or very desirable to promote improvement
in network performance and robustness. The agents, or nodes,
conduct partial processing over local data using low caliber
processors and, via limited cooperation with nearby peers,
the local results are collectively aggregated into a global
solution that, ideally, should achieve the performance of an
(hypothetical) central node omniscient of the network data.

C. G. Lopes and V. H. are with the Dept. of Electronics and Sys-
tems, Escola Politécnica, University of Sao Paulo, São Paulo, SP, Brasil,
{cassio.lopes,vitnasci}@usp.br.
L. F. O. Chamon is with the Excellence Cluster for Simulation Technology
of the University of Stuttgart, Stuttgart, Germany, luiz.chamon@simtech.uni-
stuttgart.de.

This research was funded by the ELIOT project, São Paulo Research
Foundation (FAPESP) 2018/12579-7 and ANR-18-CE40-0030. The work of
L. F. O. Chamon is funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy (EXC
2075-390740016).

A subset of such problems is that of distributed estimation,
which is the scope of this work.

One of the strategies in the literature to promote a collective
behavior towards an asymptotic global solution is the consen-
sus strategy, which usually consists of a distributed averaging
of proper quantities related to the estimation problem, such as
sample cross-covariance and auto-covariance, or even direct
estimates [5], [9]–[14].

Most applications can be modeled as a vector of parameters
to be estimated from the space-time data captured across the
network. In this context, the concept of adaptive networks
(ANs) arose as an effective real time technique to estimate
the application-related parameter vector [15], [16], [17], [18].
When the comparison is meaningful, it has been shown that
the cooperative strategy conducted by ANs may outperform
that of consensus strategies [19]. ANs are the focus of this
work.

In addition to data statistics, two factors define performance
in ANs: the learning rules at the nodes and the cooperation
protocol. The learning rule, such as the least mean-squares
(LMS) or the recursive least-squares (RLS) rules [20], [21], is
selected according to performance requirements and the local
available processor. The cooperation protocol must restrict
communications to local interactions only, favoring energy
savings. Typical cooperation protocols are the incremental and
the diffusion, with all their variants [16]–[18], [22]–[29].

In the incremental cooperation protocol, only one estimate
is shared at a time and it is updated over a cycle visit-
ing all the nodes exactly once [16], [22]. This technique
allows for extreme energy savings, though it requires the
definition of a Hamiltonian cycle across the network (an
NP-hard problem) [30] and the network becomes hostage to
local node performance, which may vary greatly. Later, a
randomized incremental version was proposed that avoided the
Hamiltonian cycle and promoted, on average, a good degree
of performance uniformity across the network [23].

The diffusion protocol [17], [18], [24]–[29], [31], [32]
is usually preferred since it explores more efficiently the
available information, also providing a good performance
uniformity across the network, although at a higher energy
cost, as compared to the incremental protocols. Whichever
the diffusion type, at any node the protocol starts by fusing
estimates retrieved from nearby nodes. The fusing is obtained
via a local function, usually a fixed linear combination of the
estimates. This fixed design follows specific rules, such as the
uniform and the Metropolis, which are node-degree-dependent
convex combiners [17], and the relative-variance rule [33],
which further accounts for node noise variance. A learning
step follows, in which the fused estimate is injected into the
local AF, which updates its estimate in response to the other

2

node estimates and to its local data [2], [17], [18], [33], [34].
Many works adopt the diffusion protocol and attempt to

limit its cooperation complexity, saving energy and commu-
nication resources, while avoiding a corresponding network
performance deterioration [25], [27], [31], [32]. In [25], a
probabilistic selection of a subset of neighbors dramatically
decreased the local diffusion cooperation, thus with major
energy savings, while maintaining the performance properties
to a great extent. Other approaches propose reducing the coop-
eration load by transmitting compressed versions of the local
estimates, as in [32]; or performing a double compression over
the local learning and fusion steps before sharing quantities
with other nodes [27]. In a similar vein, the scheme in [31]
proposes that each node transmits a subset of the local estimate
entries to its neighbors at every iteration.

Another important line of work is comprised of selective
cooperation policies over diffusion networks [17], [35], [28],
[29], [36]–[38]. The idea is not to blindly cooperate; instead,
adopt rules that give emphasis to better nodes, or that improve
estimation performance by, for example, transmitting only
sufficiently novel information.

With the inception of ANs, it was rapidly noticed that adapt-
ing the local fusion combiners, assigning larger weights to
select better nodes, without discarding the less-fortunate ones,
yielded network performance improvement [17], and different
selective adaptive policies followed [36]–[38]. Also related
are the works [28], [29], which elegantly adopt the classical
universal adaptive convex [39] and affine [40] combinations at
every node, but whose inputs are two independent and compet-
ing generic diffusion ANs; this generates an output AN whose
average network mean-square performance is guaranteed to
be at least as good as the best average network performance
between the two input competing ANs.

Despite the improvement in average network mean-square
performance achieved by selective diffusion networks, some
nodes may be better off working independently when their
cooperative and non-cooperative performances are compared
[38]. This raises a nontrivial question: when, or how, should
a node cooperate or not cooperate? In order to properly
answer this question, in this work we depart from the standard
standalone universal estimators [41], [42], adopted in [28] and
[29] at every node, and develop the concept of distributed
universal networks. In this new conceptual framework, an
adaptive network will be considered universal if every node
performs at least as well as the best available standalone node.
This simple definition, due to the spatial data diversity, to the
cooperation, and to the limited communication among nodes,
unfolds into different kinds of universality: local universality,
global universality, and universality with respect to (w.r.t.)
the non-cooperative operation. These definitions are directly
connected with desired properties of distributed adaptive sys-
tems, namely: (a) ability to reject bad nodes; (b) promotion of
good nodes; (c) node performance homogeneity (See Section
III-A). Such properties are advocated here to assess what
good performance means in the context of distributed adaptive
estimation.

After motivating proper definitions of distributed universal-
ity, a cooperation protocol is introduced that guarantees that

nodes do not lose from cooperating: their performance will be
always at least as good as if they operated individually, but
often much better. The core idea is to preserve local estimates,
while separately fusing the estimates received from neighbor-
ing nodes. A similar idea was presented in [37], in an effort to
solely improve performance in heterogeneous networks, with
a subsequent improved version in [43]. However, the idea of
recasting the distributed estimation problem in a new universal
estimation framework was put forward in our preliminary work
[38], yielding a less complex and more efficient algorithm.
Here, we extend that work in important ways: (a) formalize
the aforementioned universality types (In [38] there were two
types only); (b) prove that our adaptive distributed algorithm
is indeed universal in the new sense; (c) develop analytic
mean and mean-square models for our algorithm, for stationary
and non-stationary cases; (d) provide comparisons with other
relevant time-varying combiners from the literature [17], [36],
[37], [43], in which the proposed algorithm stands out as the
most efficient and the only one that is truly universal in all
aspects.

This paper is organized as follows. Section II covers the
fundamentals of adaptive networks, also introducing the main
adaptive combiner strategies from the literature. Section III
presents the original concept of universal estimation and how
it should be upgraded to the distributed case, with a detailed
discussion on the required new definitions of universality. In
Section IV the universal distributed algorithm is constructed.
We prove that, under reasonable conditions, our algorithm is
distributed universal. Section V develops analytical models for
the mean and mean-square algorithm evolution, also showing
that the algorithm is stable and converges to the optimum
vector in the mean, under typical conditions. The proposed
strategy is then compared in Section VI to the two main
competing algorithms from the literature, namely [36] and
[43], also showing that the developed analytical mean-square
model reasonably agrees with simulations.
Remarks on notation: small font letters refer to scalars and
vectors, and capital letters to constants and matrices: ϵ is
a scalar regularization factor; M is the local filter order (a
constant), and A is the network constant adjacency matrix.
We employ subscript indexing to denote time-varying vectors
and matrices, and parentheses to describe time-varying scalars:
at node n, un,i is a (row) vector that collects the local scalar
signal un(i); wn,i is a local vector estimate for the network
unknown vector wo; and Hn,i is a matrix that denotes the local
learning rule at time i. This is usually clear from the context.

II. ADAPTIVE NETWORKS WITH ADAPTIVE COMBINERS

An adaptive network structure is modeled as an (un)directed
graph G = (V,E), where V is the node set and E is the
edge set [30]. Algebraically, it is convenient to represent the
network by its adjacency matrix A, defined as [A]nℓ = 1 if
nodes n and ℓ are connected, and [A]nℓ = 0 otherwise. By
definition a node is connected to itself, i.e., [A]nn = 1 for all
n ∈ V . A connected network has a path connecting every two
nodes n and ℓ. The neighborhood for node n is the set Nn

of nodes that have a direct connection with node n, including
itself; that is, all the nodes that are at most one hop away from

3

node n. The strict neighborhood Nn of n does not contain
node n itself; in other words, Nn = Nn\n.

At time i, the n-th node has access to a scalar measurement
dn(i) and to another signal un(i), that is collected into an
1×M local row regressor vector1

un,i ≜ [un(i) un(i− 1) . . . un(i−M + 1)]. (1)

The data model is then defined via a known local function fn,
subject to noise vn(i). Typically, fn is linear in terms of an
unknown M × 1 global vector of parameters wo, i.e.,

dn(i) = fn[un,i] + vn(i) = un,iw
o + vn(i), (2)

or by a linear-in-the-parameters nonlinear model such as a
truncated Volterra series [44].

The goal of the N -node network is to estimate the unknown
vector wo from the available space-time data set {dn(i),un,i},
n = 1, . . . ,N . Since all nodes have the common goal wo,
it makes sense to cooperate, which not only improves overall
performance, but may also enforce stability over the distributed
adaptive process running at the nodes. For that matter, node
n runs a local adaptive filter of the form

ψn,i = ψn,i−1 +Hn,iu
T
n,i[dn(i)− un,iψn,i−1]. (3)

Equation (3) represents a stand-alone AF running locally and
returning at time i an M × 1 estimate ψn,i for the unknown
global vector wo, where Hn,i is an M ×M positive definite
matrix that defines the local adaptive rule. For a scalar step-
size µn, the most common choices are Hn,i = µnI , for the
LMS rule; and Hn,i = µn

∥un,i∥2+ϵI , for the normalized LMS
(NLMS) rule, where 0 < ϵ≪ 1 is a small regularization factor
[21]. Other rules are also possible.

Associated with node estimates are figures of merit that
assess performance. They are inherited from standard adaptive
filtering: the mean-square error (MSE), the excess mean-
square error (EMSE), and the mean-square deviation (MSD).
For node n, they are respectively defined as

MSEn(i) ≜ Ee2n(i) = E[dn(i)− un,iψn,i−1]
2

EMSEn(i) ≜ E[un,iw
o − un,iψn,i−1]

2

MSDn(i) ≜ E∥wo − ψn,i−1∥2.
(4)

The error definitions above are local quantities and depend
on which estimate is used locally at the nodes to fulfill their
tasks. In (4) it is assumed that the estimate ψn,i−1 is used
locally, which is compatible to the case when the AFs evolve
independently from other nodes. However, when cooperation
takes place, additional definitions are needed (see below).

Cooperation may be achieved by fusing nearby estimates
{ψℓ,i , ℓ ∈ Nn}, in terms of local scalar combiners cnℓ to
be designed. The resulting fused estimate ϕn,i is then injected
into the learning step, i.e., into the local AF. Collecting the
fusion and the learning steps results in the standard Diffusion
LMS [15], [17], given at node n by:

ϕn,i−1 =
∑
ℓ∈Nn

cnℓψℓ,i−1, (5)

ψn,i = ϕn,i−1 +Hn,iu
T
n,i[dn(i)− un,iϕn,i−1] . (6)

1The regressor may also have a more general structure. For instance, in
adaptive antennas, un,i = [un,1(i) un,2(i) . . . un,M (i)] [20].

Notice that the fusion step (5) aggregates space-time informa-
tion from the neighborhood and tends to be a (much) better
estimate for wo than ψn,i−1 in (3). Subsequently, ϕn,i−1 is
used as an initial condition at time i in the learning step (6),
so that the local AF responds not only to its previous local
estimate ψn,i−1, but also to those of its neighbors2. This is at
the heart of the concept of an adaptive network: although the
local node processes only local data, the fusion step couples
local learning with nearby nodes. As every node n proceeds
the same way, the entire network adapts in real-time in order
to track wo cooperatively, and in a fully distributed manner,
from the observed space-time data {dn(i), un,i}.

The aggregate estimate ϕn,i−1 in (5) can be interpreted as
a weighted least-squares estimate of wo given the received
estimates {ψℓ,i−1}. This implies that the set {cnℓ ≥ 0} must
be convex (i.e., satisfy

∑
ℓ∈Nn

cnℓ = 1) in order for the
estimates to be unbiased [17], [18]. Several simple topology-
dependent designs have been proposed, such as the uniform
rule cnℓ = 1

|Nn| , where |Nn| is the degree (number of
connections) of node n; or the Metropolis rule, which employs,
for nodes n and ℓ

cnℓ =

1/max(|Nn|,|Nℓ|), if n ̸= ℓ are linked;

0, for n and ℓ not linked;

1−
∑

ℓ∈N̄n
cnℓ, for n = ℓ.

(7)

Another rule is based on relative variance [33], which assigns
cnℓ to be inversely proportional to the noise variance σ2

v,n:

cnℓ =

σ−2
v,n∑

ℓ∈Nn
σ−2
v,ℓ

, if n ̸= ℓ are linked;

0, for n and ℓ not linked.
(8)

Such combiners are typically organized into an N ×N matrix
C = [cnℓ], which will be stochastic for the uniform combiner
and for (8), i.e., for 1 = col[1 1 1 . . . 1 1] (with length given
by the context), we have that C1 = 1. Combiner (7) leads to
a doubly stochastic matrix: 1TC = 1T and C1 = 1 [45].

The limited performance of fixed combiners led to the intro-
duction of adaptive combiners cnℓ(i) that are able to account
for network diversity and time-varying statistics [17], [36]–
[38], [43]. Adaptive Diffusion [17] was inspired by parallel-
independent combinations of AFs [39] and weighs local and
neighborhood estimates using fixed combiners cnℓ, that are
convex over Nn, and one adaptive combiner λn(i) per node.
Explicitly,

ϕn,i−1 =
∑
ℓ∈Nn

cnℓ ψℓ,i−1,

wn,i−1 = λn(i)ψn,i−1 + [1− λn(i)]ϕn,i−1,

ψn,i = wn,i−1 +Hn,iu
T
n,i(dn(i)− un,iwn,i−1),

(9)

where the estimate ϕn,i−1 fuses estimates {ψℓ,i−1, ℓ ∈ Nn}
from the strict neighborhood via fixed combiners {cnℓ}. The
local cooperative filter output wn,i−1 fuses adaptively the
local estimate ψn,i−1 with ϕn,i−1 via the adaptive parameter

2Note that the error definitions (4) can be given in terms of ψn,i−1 or
ϕn,i−1, giving rise to the two versions of the diffusion protocol: respectively,
combine-then-adapt (CTA) or adapt-then-combine (ATC) [34].

4

λn(i), which minimizes the local output error en = dn(i) −
un,iwn,i−1 in the mean-square sense.

Later, an alternative approach was taken by adopting |Nn|
different adaptive combiners per node, one per estimate ψℓ

received from the neighborhood Nn [36]. It calculates an
approximate |Nn|×|Nn| matrix QMSD

n,i−1 to the local (unknown)
covariance matrix for the estimate error vector ψn,i−1−wo, in
order to minimize the local MSDn(i) w.r.t. the |Nn| adaptive
combiners captured into the local vector {cn,i}; this algorithm
is referred to as the MSD-algorithm (MSD-alg). Similarly
to the Adaptive Diffusion above, a locally fused estimate
ϕn,i−1 is injected into the local AF. Upon receiving the
estimates {ψℓ,i−1}, ℓ ∈ Nn from the neighborhood, and letting
SMSD
n = (I− 11T

|Nn|), where 1 is |Nn|×1, the algorithm at node
n becomes[
QMSD

n,i−1

]
kℓ

= [ψℓ,i−1 − ψℓ,i−2]
T [ψk,i−1 − ψk,i−2], k, ℓ ∈ Nn,

ϕn,i−1 =
∑
ℓ∈Nn

[cn,i−1]ℓψℓ,i−1,

ψn,i = ϕn,i−1 +Hn,iu
T
n,i(dn(i)− un,iϕn,i−1),

cn,i = cn,i−1 − µM,n S
MSD
n QMSD

n,i−1cn,i−1,
(10)

where matrix QMSD
n,i−1 is |Nn|×|Nn|, [cn,i]ℓ is the ℓ-th element

of the combiner vector cn,i and µM,n is a scalar step-size that
depends on two other parameters κM and ϵM , according to
Equations (14) and (18) in [36]. The initial conditions for the
algorithm are 1T cn,−1 = 1, [cn,i]ℓ ≥ 0, and ψn,−1 = ψn,−2 =
0M×1. Here too both ψn,i−1 or ϕn,i−1 can be used to define
the output errors3.

In [37], a least-squares (LS) adaptive combiner algorithm
(LS-alg) was proposed with an important change in the proto-
col: keep the local AF estimate ψn,i−1 adapting independently
from the rest of the network. In other words, a set of |Nn|
adaptive combiners collected into a local vector cn,i fuses
the local independent AF estimate ψn,i−1 with the strict
neighborhood estimates {wℓ,i−1, ℓ ∈ Nn}, generating a local
estimate wn,i that is ready for use. The procedure is the
same as in the original Adaptive Diffusion, with a subtle, yet
effective, difference: wn,i is not injected into the local AF.
The original work had instabilities in the calculation of the
combiners, as acknowledged by the authors, so that a stable
and better version was published later in [43], and is described
below. The identity matrix I is |Nn|×|Nn| and 1 is |Nn|×1:

ỹn,i = [un,i(wℓ,i−1 − ψn,i−1)]ℓ∈Nn
(|Nn| × 1)

en(i) = dn(i)− un,iψn,i−1

Pn,i =

i∑
p=1

γi−p
n ỹn,pỹ

T
n,p , zn,i =

i∑
p=1

γi−p
n ỹn,p

cn,i = (Pn,i + ϵLSI)
−1 zn,i

wn,i = [1− 1T cn,i]ψn,i−1 +
∑
ℓ∈Nn

[cn,i]ℓ wℓ,i−1,

ψn,i = ψn,i−1 +Hn,iu
T
n,i[dn(i)− uiψn,i−1],

(11)

where [cn,i]ℓ is again the ℓ-th element of vector cn,i, 0 ≪ γn <

3For the MSD supervisor, we use the latter in Sec. VI, since this usually
results in better performance.

1 is a local forgetting factor and ϵLS > 0 ensures invertibility
in Pn,i + ϵLSI . The estimate wn,i tends to be better than
ψn,i−1, thus it is adopted locally. As such, the error quantities
(4) for (11) must be updated in terms of wn,i.

The more recent works in [28] and [29] explore directly
the original concept of universality at every node. At each
iteration, each node runs two independent diffusion process
represented by two local adaptive filters whose estimates,
w1,n,i and w2,n,i, are generated cooperating with nearby nodes
and feed a local combiner

wn,i = λ1(i)w1,n,i + λ2(i)w2,n,i, (12)

whose combiners λ1(i) and λ2(i) are chosen to be either
convex [29], or affine [28]. The output estimate wn,i is
guaranteed to be classically universal in the mean-square error
sense. As such, each node output is at least as good as its two
input diffusion processes w1,n,i and w2,n,i. The overall result
is that the output network average performance is at least as
good as the best average network performance between the two
input diffusion processes. This important contribution is not
universal in any of the proposed universality types introduced
in this work. This is because the output estimates wn,i at
every node are locally confined, they are not propagated to
the neighborhood: there is no network level feedback and no
network learning takes place, in the sense introduced in [38].

Extensive simulations show that both algorithms (10) and
(11) consistently outperform both the original diffusion LMS
[17] and its adaptive version (9). Although effective at improv-
ing performance, (10) and (11) are not distributed universal
algorithms as the one proposed in [38], which is extended and
studied in detail in this work.

III. DISTRIBUTED UNIVERSAL ESTIMATION

Our first task is to extend the concepts of universal estima-
tion [41], [42] to the distributed case.

The design of an AF takes place by optimizing some figure
of merit, say mean-square error, in terms of a set of parameters
θ, which may include the filter order M , the step-size µ, the
forgetting factor γ for the RLS filter, the rank parameter K
for the APA filter, etc. Traditionally, such parameters must be
designed from not always accurate analytical models that may
depend on unknown quantities, so that empirical tests must
be made. When the scenario is time-varying, the design is an
even more challenging task.

In this context, universal estimation is a change in the
design paradigm: instead of choosing a fixed parameter set
θ under limited knowledge, select a pool of K candidates
{θk} for θ, each of them forming an individual estimator, or
expert, and present them to a supervisor, which is ultimately
in charge of generating a reasonable estimate w for wo by
consulting the pool of experts. The central question is: what is
a reasonable estimate? The answer to that is the very definition
of universal estimation: an estimator is considered universal
when its supervisor is able to at least match the performance
of the best individual expert in the pool, in terms of the
adopted figure of merit. Within a class, the pool {θk} has
to be rich enough to span the unknown optimal θ. Of course,
this might represent an explosion in computational complexity,

5

so care must be taken to find a trade-off. The supervisor is
any function that consults the pool of experts and delivers a
universal estimate w.r.t. the adopted figure of merit.

Such ideas have been extensively and successfully explored
in the literature in the context of combinations of adaptive
filters [39], [46], in terms of pools of filters with different
step-sizes, filter orders, or even different learning rules [47]–
[51]. The supervisor admits different designs, but one that is
widely adopted and is efficient is the convex supervisor, which
is an activation function of a free parameter to be adapted [50].

A. Distributed universality

Typical distributed adaptive systems rely on several nodes
consulting multiple data sources across the field of interest,
therefore subject to a natural spatial diversity. In general,
cooperation among the nodes is desirable, though it has to be
implemented under limited communications. The combination
of spatial diversity and limited communications may drive
different nodes to different performances, which might not be
acceptable in most applications. As such, a intuitive set of
desired properties for ANs may be defined and will guide the
development of a distributed universal protocol to operate in
any network:

A) Ability to reject a bad node;
B) Ability to exploit an exceptional node;
C) Node performance homogeneity.

Rejecting a bad node (A) relates to the ability of avoiding
using poor estimates that could degrade the performance of
other nodes in the network. This is paramount in applications
such as remote sensing networks, where sensor damage can
degrade the information provided by nodes. Similarly, the
ability to exploit estimates from an exceptional node (B) lends
robustness to the AN: nodes operating in poor conditions
can take advantage of better nodes. Finally, performance
homogeneity (C) is fundamental if the network is to operate in
a fully distributed manner. Indeed, each node must ultimately
rely on its local estimate to perform actions, such as alerting to
the presence of an intruder or anomalies in the field [2], [52],
or even controlling some environmental variable [1], [24]. In
many ways, promoting good performance across all nodes is
more important than having better average performance with
some nodes (much) worse than others.

In order to address the aforementioned desired properties,
three main points must be tackled: define the experts; select
figures of merit; and define what is a supervisor when multiple
data sources are consulted and cooperation among nodes is a
requirement.

In the AN case, the selection of the pool of experts is
natural and is comprised of the N adaptive nodes attempting
to estimate wo from the data available across the network.
The required expert diversity is guaranteed by the natural
space-time data diversity, and/or by employing different AF
parameters at the nodes, or even different learning rules.

Typical figures of merit adopted for ANs are global network
quantities: average MSE, EMSE and MSD, defined from the

local quantities previously presented in (4):

MSE(i) =
1

N

N∑
n=1

MSEn(i),

EMSE(i) =
1

N

N∑
n=1

EMSEn(i) (Network quantities),

MSD(i) =
1

N

N∑
n=1

MSDn(i).

(13)

These metrics provide a valid overall measure of network
performance and are widely used in the literature, with or
without cooperation. Cooperation does improve network per-
formance according to these metrics, even if not everybody
in the network will experience an improvement, as compared
to the non-cooperative operation [25], [37]. This implies
that we must look carefully into the way nodes cooperate,
and should discriminate performance across the network by
also inspecting the local quantities MSEn(i), EMSEn(i) and
MSDn(i).

One key point of universal estimators is that expert integrity
is preserved, which implies that at some level they should
work independently. This is because cooperation might lead
to the poor performance of some experts to contaminate that
of the good ones, and who’s whom is application-dependent
or may vary over time. In the AN case, this property is usually
violated when cooperation is implemented. On the other hand,
without cooperation the global performance of ANs is deterred
to a great extent; furthermore, in some applications, such as
source localization and scalar field estimation applications,
nodes must cooperate in order to solve the global problem
in a distributed manner [4], [8]. Therefore, in order to enforce
the desired properties of ANs, cooperation demands that the
definition (def.) of universality be extended.

Def. 1 (Local universality). A node n of an AN is said to be
locally universal when it holds that n is at least as good as the
best node in its neighborhood, i.e., the best node m ∈ Nn.

Def. 2 (Global universality). An AN is said to be globally
universal when for all nodes n ∈ {1, . . . ,N} it holds that n
is as good as the best node in the network, i.e., the best node
m ∈ {1, . . . ,N}.

Def. 3 (Universality w.r.t. the non-cooperative strategy). An
AN is said to be universal with respect to the non-cooperative
strategy when for all nodes n ∈ {1, . . . ,N} it holds that node
n performs at least as well as if it were independent of the
rest of the network.

Def. 4 (Asymptotic universality). An AN is said to be asymp-
totically universal, when it is universal for i → ∞, i.e., at
steady-state.

These definitions are inspired by those found in the contexts
of universal prediction [41] and theory of individual se-
quences [53]. They are straightforward and intuitive, although
nontrivial. For instance, Def. 3 might seem obvious, but it is
often violated in standard diffusion ANs [17], as is the case
of Def. 1.

6

Node

E
rr
or

1 2 3 4

Non-cooperative

Cooperative

(a)
Node

E
rr
or

1 2 3 4

Non-cooperative

Cooperative

(b)
Node

E
rr
or

1 2 3 4

Non-cooperative

Cooperative

(c)
Fig. 1. Distributed asymptotic universality (Def. 4) in ANs: (a) Globally
universal (Def. 2) but not universal w.r.t. the non-cooperative strategy (Def. 3);
(b) Universal w.r.t. the non-cooperative strategy (Def. 3), but not globally
universal (Def. 2); (c) Globally universal (Def. 2) and universal w.r.t. the
non-cooperative strategy (Def. 3).

Figure 1 depicts examples in a hypothetical four-node
connected network to illustrate the different definitions of
universality. Considering asymptotic behavior (Def. 4), it is
straightforward to see that local universality (Def. 1) im-
plies both rejection of bad nodes and the exploitation of
exceptional ones. Moreover, for a connected AN with an
undirected graph, if every node is locally universal, then global
universality (Def. 2) follows (if the network is undirected
and locally universal, then the performance of each pair of
connected nodes must be equal. If the network is connected,
there is a path between every pair of nodes; thus the network
must be globally universal). Thus, globally universal networks
not only guarantee that underperforming nodes are isolated,
but also that all nodes take advantage of the performance of
superior ones. What is more, global universality guarantees
node performance homogeneity. Finally, rejecting poor nodes
is clearly related to the concept of universality w.r.t. the non-
cooperative strategy (Def. 3), as it requires that cooperation
only improves local performance.

Notice that Definitions 2 and 3 denote two different forms
of distributed universality. Indeed, it is possible for ANs to
be globally universal without being universal w.r.t. the non-
cooperative strategy and vice-versa. In fact, global universality
alone only leads to performance homogeneity across nodes.
Universality w.r.t. the non-cooperative strategy, on the other
hand, guarantees that cooperating is the best strategy for
each individual node in the network instead of only for the
network on average. Both concepts must apply to obtain all the
aforementioned properties for ANs. Definition 4 is a realistic
definition, in view of the limited communications and energy
within the network: in a large network, with a large radius
[30], an exceptional node estimate that is several hops away
from another given node will take several algorithm cycles to
be broadcast network-wide, making universality necessarily an
asymptotic property.

B. The quest for a distributed supervisor

The first point to make is that a single supervisor directly
imported from the standard single data source case [39], [46],
[50] is not viable to implement distributed universality. This
is because in a network with N distributed experts consulting
N data sources, the access of the single supervisor to all the
expert estimates would require its centralization: nodes report
their estimates to the sole supervisor which promptly reports

back a universal estimate for local use4. Here universality
is always guaranteed and its original definition is enough,
since the network will access the best estimate and it will
be the same for everybody. However, a central node is highly
undesirable as it represents a catastrophic failure point for the
network and the amount of communication resources (energy,
more powerful transceivers, etc.) is prohibitively large; and it
might be infeasible simply due to lack of connectivity, either
because links are not available, or because routing protocols
may impose too much overhead and excessive delays.

A second strategy would be to implement a fully connected
network. In this setup, every node may be seen as a central
node, and this hints at placing N supervisors, one per node,
embedded with the local expert. A given supervisor at node k
receives estimates from all the network experts and correctly
generates the best estimate for local use. Due to the full
connectivity, this may be replicated at all other nodes with
their respective local supervisors, so that it is guaranteed
that every node will have an estimate that is the best the
network has to offer and all estimates will be statistically
equivalent, since every node has access to the same set of
experts. As a consequence, the original universality concept
suffices too in this scheme. However, the implementation of
this level of connectivity demands even larger resources than
the centralized node case. Thus, it is also impractical.

We are left with the realistic scenario, mentioned earlier
in this section: nodes have access only to their nearby peers,
with different degrees of connectivity and with multiple data
sources that reflect spatial diversity: these facts combined do
not guarantee in general that a node will never loose from
cooperation, that the network has the ability to reject bad
nodes and/or promote exceptional ones, or even that the node
performance will be uniform. In this scenario, we establish
the main conceptual leap from standard universal estimation:
define N supervisors, one per node, and let the supervisors
cooperate, instead of direct expert cooperation. In summary,
we propose that a distributed supervisor may be implemented
by a set of N collaborative supervisors that shelter their
local experts from the outer world. In such realistic scenarios,
existing distributed adaptive systems may present, or not, the
different kinds of universality formalized earlier. In response
to that, in the following section we show in detail how to
construct a cooperation protocol that explores the idea of
distributed supervision, and that is proven to be universal w.r.t.
all the Definitions 1–3.

IV. A DISTRIBUTED UNIVERSAL COOPERATION PROTOCOL

Why should a node cooperate, if its performance might
deteriorate? Should cooperation in the name of a greater good
be enough? Such questions lie at the heart of what distributed
supervision should deliver in the distributed multisource case.

To begin with, a more inviting cooperation protocol should
guarantee that a node never loses from cooperating; its
performance at least remains the same, as compared to its

4For instance, the MSE for each expert could be calculated and the
supervisor would select the estimate corresponding to the expert with the
smallest MSE.

7

independent operation. The idea is that all nodes improve, with
the possible exception of the best node in the network, which
should not worsen its non-cooperative performance. Due to
topology constraints, a generic node is unaware of which, or
where, is the best node in the network. If the protocol assures
that there will be no losses in performance, then cooperating
becomes an interesting deal.

A. Constructing the protocol

A protocol that promotes distributed universality with re-
spect to the introduced Definitions 1–3 has two steps.

Firstly, notice that the concept of universality w.r.t. the non-
cooperative strategy (Def. 3) motivates the idea of protecting
local estimates from network perturbations, an idea that was
also proposed in [37], albeit for different reasons. Indeed,
allowing each node to operate as if it were independent of
the network is a simple way to guarantee that its estimation
process is not disturbed by underperforming neighbors. This,
however, leads to a non-cooperative network. Hence, the nodes
need a way to preserve their own estimates, without neglecting
those from the rest of the network. This can be implemented
much like what was done in the adaptive diffusion scheme
(9) [17], in terms of a local independent estimate ψn and an
estimate ϕn fused from neighboring supervisor estimates

ϕn,i−1 =
∑
ℓ∈Nn

cnℓwℓ,i−1, (14a)

wn,i = λn(i)ψn,i−1 + [1− λn(i)]ϕn,i−1, (14b)
ψn,i = ψn,i−1 +Hn,iu

T
n,i(dn(i)− un,iψn,i−1).(14c)

Two crucial differences in (14) from the adaptive diffusion (9)
stand out: (a) the local estimate ψn,i evolves independently
according to the local learning rule, i.e., wn,i is not injected
into the local AF [37], [38]; and (b) the local supervisor
estimate wn,i−1 is shared within its neighborhood, instead of
sharing ψn,i−1. Intuitively, wn,i−1 tends to be a better estimate
than ψn,i−1. Furthermore, in [38] a network learning model
was developed that shows how sharing wn,i−1 implements
a network-level feedback that, hop by hop, allows the best
estimates to reach the whole network, while sharing ψn,i−1

not necessarily does. Finally, (14) unveils the need for one
supervisor per node that implements cooperation, rather than
the local adaptive filters: cooperation is carried out indirectly.

The last resource is an accelerating mechanism that feeds
back the supervisor output into the local AF, every Ln itera-
tions [51]; it was already successfully applied in [38]:

ψn,a = δLn(i)wn,i + [1− δLn(i)]ψn,i−1, (15)
ψn,i = ψn,a +Hn,iu

T
n,i[dn(i)− un,iψn,a], (16)

where δLn
(i) = δ(i − rLn) is the Kronecker delta, with

r ∈ Z+. Note that an adaptive diffusion iteration, as in (9),
is periodically implemented above: within an Ln-length cycle,
the local AF experiences Ln−1 independent iterations; at the
Ln-th iteration, it is perturbed with the supervisor estimate
wn,i exactly once, so that the local AF has access to the
potentially best estimate in its neighborhood. As such, Ln

should not be small, since otherwise it violates the principle of

preserving the local AF. On the other hand, too large values for
Ln do not accelerate the transient, returning to purely isolated
local estimates in the limit Ln → ∞ (i.e., transfers never
occur). A simple design technique for Ln is imported from
[51], and a typical value for AN applications is Ln = 1,000.
We note, however, that a good value for Ln may be larger if
the input signals are very correlated or if M is large, such that
convergence of the local experts is slow. Conversely, smaller
values of Ln might be useful for small M and uncorrelated
signals, a situation in which the local experts will converge
quickly. In Section VI we show in Example 6 (See Fig. 13)
that the network performance is relatively insensitive within a
wide range for Ln.

We now collect all the equations into a complete distributed
universal adaptive network with a generic learning rule at
the nodes. Upon selecting the local learning rule via matrix
Hn,i, and the reception of the supervisor estimates {wℓ,i−1}
from the neighborhood, the proposed algorithm implemented
at node n is:

λn(i) =
1

1 + e−an(i−1)
, (17a)

λ̌n(i) =

λn(i), if − a+ < an(i) < a+,

0, if an(i) = −a+,
1, if an(i) = a+.

(17b)

ϕn,i−1 =
∑
ℓ∈Nn

cnℓ wℓ,i−1, (17c)

wn,i = λ̌n(i)ψn,i−1 + [1− λ̌n(i)]ϕn,i−1, (17d)
en(i) = dn(i)− un,iwn,i, (17e)
pn(i) = νnpn(i− 1)

+ [1− νn] |un,i(ψn,i−1 − ϕn,i−1)|2 , (17f)
µ̃a,n = µa,n / [pn(i) + ϵp], (17g)

an(i) =
[
an

+ µ̃a,nun,i(ψn − ϕn)en(i)λn[1− λn]
]a+

−a+
, (17h)

ψn,a = δLn
(i)wn,i + [1− δLn

(i)]ψn,i−1, (17i)
ψn,i = ψn,a +Hn,iu

∗
n,i[dn(i)− un,iψn,a], (17j)

where in (17h) an = an(i−1), λn = λn(i), ψn = ψn,i−1 and
ϕn = ϕn,i−1.

In the algorithm above, (17a) is a convex activation function
that represents the supervisor parameter, which is adapted
in terms of the auxiliary variable an(i) [54]. Eq. (17b)
implements a truncation operation, either ceiling λn(i) to 1,
or flooring it to 0, depending on the limiting parameter a+
(Typically a+ = 4); this results in a smaller variance for
the random variable λ̌n(i), also accelerating convergence [54].
The neighborhood supervisor estimates are fused into ϕn,i−1

in (17c), which is used to generate the local supervisor output
wn,i in (17d) for local use, with the associated estimation
error en(i) in (17e). The quantity pn(i) is a normalization
factor, with the associated filtering parameter 0 ≪ νn < 1 and
regularization parameter 0 < ϵp ≪ 1, that helps improving the
convergence of the parameter an(i); this also has the effect of
considerably limiting the required range for µa,n in (17g),
which typically can be chosen in the interval (0, 1] when

8

normalization is adopted [54]. Equation (17h) is the actual
update recursion for an(i) and it drives λn(i) in (17a).

Since (17) above evolved from the adaptive diffusion pro-
tocol, the fixed combiners {cnℓ ≥ 0} must also be convex
over the strict neighborhood Nn, that is

∑
ℓ cnℓ = 1 for

0 ≤ n, ℓ ≤ N , and cnℓ = 0 for ℓ ̸= Nn. For that matter,
the Uniform, (7) and (8) rules may be adopted to design
{cnℓ}, mutatis mutandis. The Universal Adaptive Supervisor
(17) is referred to as the U-sup algorithm. As with the LS-
alg (11), the best available estimate at node n is wn,i, thus the
error definitions for U-sup must be updated w.r.t wn,i. Besides
performance, the computational complexity is of central im-
portance in IoT and sensor network applications, and here we
consider the number of multiplications per node per iteration
N× as the metric for comparison, disregarding the local AF
operations (which are essentially the same for all distributed
algorithms considered here).5 The number of multiplications
required for implementing the Universal supervisor algorithm
(U-sup) (17), the Mean-Square Deviation combiners algorithm
(MSD-alg) (10) and the Least-Squares combiners algorithm
(LS-alg) (11), respectively, are

N×(U-sup) =
(
|Nn|+ 3

)
M + 7

N×(MSD-alg) =

(
|Nn|2 + 3|Nn|+ 2

)
2

M + 2|Nn|2

N×(LS-alg) = 2
(
|Nn|+ 1

)
M + |Nn|3/3 + |Nn|2 + |Nn| .

(18)
The complexity of all algorithms depends, obviously, on the
application, which is captured by M ; but also depends on
the network topology, captured by |Nn| (which assumes the
algorithms explore the entire neighborhood at each node). For
a given application, which means a fixed M , if the network
infrastructure is enlarged for performance improvement, the
U-sup complexity scales linearly with |Nn|; the LS-alg has
a linear term on |Nn|M , but which is twice as complex
as the corresponding term in U-sup, and has a cubic term
|Nn|3/3 that is application independent; and the MSD-alg
scales quadratically with |Nn|, and has another quadratic term
2|Nn|2 that is also application independent. As a numerical
example, consider Example 1 in Section VI: a network of
N = 15 nodes, with M = 50 for the AFs, and average node
degree of |Nn| = 6, returns 457 multiplications for the U-
sup algorithm, 814 for the LS-alg, and 1472 for the MSD-alg.
For the same example, increasing node degree to |Nn| = 10,
the U-sup will require 657 multiplications (44% increase),
1543 for the LS-alg (90% increase) and 3500 for the MSD-alg
(138% increase).

B. Universality of the proposed protocol

Showing that algorithm (17) achieves the Definitions 1–
3 of distributed universality is intricate, since (17) is a set
of stochastic coupled nonlinear recursions; in particular, the
recursions for the local supervisors λn(i) are coupled due to
the sharing of information across the network. In this section,
we show that any steady-state solution to (17) must achieve

5Nevertheless, they still play a role in the computations for cooperation
strategies.

universal performance according to Definitions 1–3, under
three assumptions:
A.1 The network is at steady-state, that is, all local filters

have converged to their final MSD performance, and the
supervisors have also converged to their final values (see
Sec. V for a discussion about convergence);

A.2 The local supervisors (17b), (17d) choose the best option
(in terms of MSD) between ψn,i and ϕn,i at steady-state;

A.3 The local filters are independent, i.e., Ln → ∞.
Note that Assumption A.2 was also used in [39] to prove that
the convex combination scheme is universal. This assumption
is justified since using [49, eq. (11) and (17)] it can be shown
that the supervisor weight for the convex combination scheme
minimizes the combination MSE if µa → 0. Minimization
of MSE is equivalent to minimization of the MSD when the
regressors un,i are white [20]. Note also that Assumption
A.2 is related to local properties of the local supervisors,
and is thus not equivalent to assuming network universality.
Assumption A.3 is equivalent to requiring that Ln is large
enough so that the local filters and supervisors have time to
converge before a decision about transfer of coefficients is
made.

In the next section we present a model for the transient
behavior of (17) in the mean and mean-square senses, but the
study of the limiting behavior of the resulting model is still
considerably difficult, and is left for a future work.

We now explore the steady-state properties of the proposed
AN distributed estimator (17). We show in the next two
theorems that the proposed scheme is universal w.r.t. the non-
cooperative strategy, and that, if a network reaches steady-state
(constant MSDs at each node), then necessarily the supervisor
leads to global universality.

Theorem 1 (Universality w.r.t. the non-cooperative strategy).
Under Assumptions A.1–A.3, the network feedback protocol
described in (17) is asymptotically universal w.r.t. the non-
cooperative strategy (Def. 3).

Proof: From equation (17d), the output wn,i of node
n is a linear combination between the non-cooperative local
estimate ψn,i−1 and the averaged estimates from its neigh-
borhood ϕn,i−1. Notice that the non-cooperative strategy is
a particular case of (17) in which λn(i) = 1, for all i. Thus,
since the linear combiner λn(i) minimizes the local MSDn(i),
the output of each node wn,i is guaranteed to be at least
as good as its non-cooperative version. If the local estimate
ψn,i−1 is better than ϕn,i−1, then the supervisor λn(i) will
drive wn,i to at least the local performance; on the other hand,
if ϕn,i−1 is better, then λn(i) will guide the local node output
wn,i to the average neighborhood performance, which is better
than the local non-cooperative by hypothesis. Therefore, node
n never loses from cooperating, thus it is universal w.r.t. the
non-cooperative case (Definition 1).

Theorem 2 (Asymptotic global universality). The network
feedback protocol from (17) is globally universal (Definitions
2 and 4) under Assumptions A.1–A.2.

Proof: Suppose that the estimates wn,i computed by

9

each node resulted in different values of local MSDn(i) =
E ∥wo − wn,i∥2 at steady state. We show next that this
leads to a contradiction. Assume then that the network is at
steady-state and node n0 has the worst performance of all
nodes, that is, MSDn0

(i) ≥ MSDn(i) for all n ̸= n0 and
MSDn0

(i) > MSDℓ(i) for at least one ℓ ∈ Nn0
(such a node

has to exist, since the number of nodes is finite and we are
assuming that not all local MSDs are equal). Therefore, we
have, at steady-state,

MSDn0
(i) = E ∥wn0,i − wo∥2 ≥ E ∥wn,i − wo∥2

= MSDn(i) for n ∈ Nn0
,

(19)

with MSDn0(i) > MSDℓ(i) for at least one ℓ ∈ Nn0 . Now,
at steady-state MSDn(i) = MSDn(i− 1), and from (17c)

E ∥ϕn0,i−1 − wo∥2 = E

∥∥∥∥ ∑
ℓ∈Nn0

cn0ℓwℓ,i−1 − wo

∥∥∥∥2
≤ E

∑
ℓ∈Nn0

cn0ℓ∥wℓ,i−1 − wo∥2 =
∑

ℓ∈Nn0

cn0ℓ MSDℓ(i− 1),

(20)
where we used the fact that ∥ · ∥2 is a convex function and
the {cnn0

} add up to one. Since by hypothesis n0 is the worst
node, and at least one node in its neighborhood has a smaller
MSD, we conclude that necessarily

E ∥ϕn0,i−1−wo∥2 ≤
∑

ℓ∈Nn0

cn0ℓ MSDℓ(i−1) < MSDn0
(i−1).

(21)
The last inequality results from the hypotheses that∑

ℓ∈Nn0
c̄n0ℓ = 1, that MSDn ≤ MSDn0 , and that there

is ℓ0 ∈ Nn0
such that MSDℓ0 < MSDn0

. This means that
the supervisor for node n0 should change its choice to reduce
the MSD, contradicting Assumptions A.1-A.2. We conclude
therefore that at steady-state all nodes must have the same
performance.

V. PERFORMANCE ANALYSIS

In this section we propose a model for the mean and mean-
square performance of the new universal diffusion strategy.
Let us start by introducing some additional assumptions. We
extend our data model (2), now allowing for changes in the
vector of unknown parameters:

dn(i) = un,iw
o
i−1 + vn(i), (22)

where wo
i−1 ∈ RM×1 is a time-varying vector of unknown

parameters the network is trying to estimate, vn(i) is an i.i.d.
zero-mean measurement noise with variance σ2

v,n, independent
of all regressor vectors {uℓ,i} in the network. The initial
condition wo

−1 is a random unit norm vector. We further
assume that
A.4 {un,i} is a zero-mean i.i.d. sequence with covariance

matrix Rn;
A.5 Ln ≡ L is the same for all nodes in the network;
A.6 The optimum parameter vector wo may change according

to a random walk model

wo
i = wo

i−1 + qi, (23)

where {qi} is an i.i.d. vector sequence with zero mean
and autocovariance matrix Q = E qiq

T
i ;

A.7 The stepsizes µn and µa,n are small enough for the usual
slow adaptation approximations in adaptive filtering to
be valid, and such that the variance of an(i) can be
disregarded [20], [21], [44], [54];

A.8 The forgetting factors νn are close to one, so that the
variance of pn(i) can be disregarded;

A.9 λ̌n(i) = λn(i) always in (17b).
The discussion below assumes, for simplicity, that the local
adaptive filters in all nodes are using the same algorithm,
either LMS or NLMS. It would not be difficult to modify
the models and arguments for other types of filters, or even
for networks running different classes of filters at each node.
Assumptions A.4, A.6, A.7 and A.8 are widely used in the
literature [20], [21], [54]. Assumption A.5 is used only to
simplify the analysis and can be easily relaxed. Assumption
A.9 is used to simplify the model and will tend to increase
the model variances.

A. The global adaptive network model

We proceed by defining the local error vector quantities for
each node as

ψ̃n,i = wo
i − ψn,i, w̃n,i = wo

i − wn,i. (24)

Next, collect the local quantities defined in Algorithm (17)
into global variables:

ψ̃i = col
(
ψ̃n,i

)
, w̃i = col (w̃n,i) , vi = col (vn(i)) ,

ei = col (en(i)) , Ui = diag (un,i) , Mi = diag (Hn,i) ,
ai = col (an(i)) , G = C ⊗ IM , Ma = diag (µa,n) ,
pi = col (pn(i)) , ν̄ = diag (νn) ξi = 1N ⊗ qi.

A set of equations describing the evolution of the entire
network can then be obtained as follows.

Let cTn be the n-th row of the combining matrix C and
Gn = cTn ⊗ IM (the n-th block-row of G). Under A.9, the
equations for the overall network can be written in terms of
the error vectors as

Λi = diag

(
1

1 + e−an(i−1)

)
, Li = Λi ⊗ IM , (25)

w̃i = Liψ̃ + (IMN − Li)Gw̃ + ξi, (26)

ψ̃i =

{
w̃, if δLn(i) = 1,(
IMN − UT

i MiUi

)
ψ̃ − UT

i Mivi + ξi, otherwise.
(27)

ei = Uiw̃i + vi − Uiξi, (28)

pi = ν̄pi−1 + (IN − ν̄) col

(∣∣∣un,i (Gnw̃ − ψ̃n

)∣∣∣2) , (29)

Ma,i = Ma diag

(
1

pn(i) + ϵp

)
, (30)

ai =
[
a+Ma,iΛi (I − Λi) diag

(
un,i

(
Gnw̃ − ψ̃n

))T

ei

]
,

(31)

where ψ̃ = ψ̃i−1, ψ̃n = ψ̃n,i−1 and w̃ = w̃i−1: some iteration
indexes will be omitted in the sequel whenever necessary, and

10

the brackets [ai] = [ai]
a+

−a+
in (31) constrain each entry of

vector ai to the interval [−a+, a+]. To obtain (26), we used
the facts that qi is the same across the network, and that∑

ℓ∈Nn
cnℓ = 1.

B. Analysis in the mean

Assume that the variance of an(i − 1) is small enough so
that

Λi ≈ Λ̄i = diag
(
λ̄n(i)

)
≜ diag

(
1

1 + e−E an(i−1)

)
. (32)

This assumption is reasonable if µa is small (Assumption A.7),
or when the {an(i− 1)} are close to their limits at ±a+ [49].
Under Assumption A.8, we can approximate pi ≈ E{pi},
and the evolution of āi ≜ E{ai} is given by (to simplify
the following argument we introduce the auxiliary variable ǎi
as below)

ǎi = ā+MaΛ̄
(
I − Λ̄

)
E

{
diag

(
un,i

(
Gnw̃ − ψ̃n

))T

ei

}
,

āi = [ǎi]
a+

−a+
, (33)

where Λ̄ = Λ̄i and Ma = Ma,i ≜ E{Ma,i} will be evaluated
further on.

Replacing

ei = Ui

(
Liψ̃i−1 + (IMN − Li)Gw̃i−1

)
+ vi − Uiξi

into (33), and recalling that vi and ξi are independent of all
other variables, we obtain

ǎi = ā+MaΛ̄
(
I − Λ̄

)
E

{
col

[(
Gnw̃ − ψ̃n

)T

×uTn,iun,i
(
λ̄n(i)ψ̃n,i−1 +

(
1− λ̄n(i)

)
Gnw̃

)]}
= ā+MaΛ̄

(
I − Λ̄

)
col

[
Tr

(
Rn

(
λ̄n(i) E{ψ̃nw̃

T }GT
n

+
(
1− λ̄n(i)

)
Gn E{w̃w̃T }GT

n − λ̄n(i) E{ψ̃nψ̃
T
n }

−
(
1− λ̄n(i)

)
Gn E{w̃ψ̃T

n }
))]

.
(34)

We see that for the evaluation of āi we must find

Ti ≜ E{w̃iw̃
T
i }, Si ≜ E{w̃iψ̃

T
i }, Ki ≜ E{ψ̃iψ̃

T
i }, (35)

from which all expected values in (33) can be obtained directly
as follows. Note that ψ̃n,i−1 =

(
bT(n) ⊗ IM

)
ψ̃i−1, where b(n)

is the n-th N × 1 canonical basis vector. Denoting Bn =
bT(n) ⊗ IM , we can rewrite (33) as

āi = ā+MaΛ̄
(
I − Λ̄

)
col

[
Tr

(
Rn

(
λ̄nBnS

TGT
n +(

1− λ̄n
)
GnTG

T
n − λ̄nBnKB

T
n −

(
1− λ̄n

)
GnSB

T
n

))]
,

(36)

with λ̄n = λ̄n(i), K = Ki−1, S = Si−1 and T = Ti−1. Note
that a recursion for Ma,i can be also obtained from Ti−1,
Si−1 and Ki−1 as

Ma,i = E{Ma,i} ≈ Ma diag

(
1

E{pn(i)}+ ϵp

)
, (37)

with p̄n(i) ≜ E{pn(i)} and

p̄n(i) = νnp̄n(i− 1) + (1− νn) E

{∣∣∣un,i (Gnw̃ − ψ̃n

)∣∣∣2}
= νnp̄n(i− 1) + (1− νn) Tr

{
Rn

(
GnTi−1G

T
n

− GnSi−1B
T
n −BnS

T
i−1G

T
n +BnKi−1B

T
n

)}
. (38)

The covariance matrices Ti, Si and Ki can be obtained from
the autocorrelation matrix of the vector Θi = col

(
w̃i, ψ̃i

)
,

and will be dealt with in Section V-C. A recursion for Θi can
be obtained from (25)–(31) as follows.

Θi =

[
(IMN − Li)G Li

0 I − U∗
i MiUi

]
Θ+

[
ξi

ξi − UT
i Mivi

]
,

(39)
with Θ = Θi−1. Using again the assumption that the variance
of an(i) is small (A.7), the mean of (39) becomes

Θ̄i ≜ E{Θi} =

[
(IMN − L̄i)G L̄i

0 I −Rµ

]
︸ ︷︷ ︸

≜Fi

Θ̄i−1, (40)

where L̄i = Λ̄i ⊗ IM , and Rµ depends on the particular
algorithm used at each node. Assuming all nodes use LMS,
we have Rµ = diag (µnRn). If the nodes use NLMS and the
regressors un,i are tap-delay lines, we can use the approx-
imation Rµ ≈ diag

(
µn

Mσ2
u,n
Rn

)
, where σ2

u,n = E{u2n(i)}
[55]. Of course, other algorithms can also be used with their
appropriate models, and the algorithms need not be equal for
all nodes.

We next study the stability and convergence of (40)6. Note
first that without transfer of coefficients (i.e., for L → ∞)
the recursion for E{ψ̃i} is linear and uncoupled from that for
E{w̃i}, so E{ψ̃i} converges to zero if and only if ρ(I−Rµ) <
1, where ρ(·) denotes the spectral radius, or equivalently if
0 < µnRn < 2I [20]. The stepsizes must then satisfy

0 < µn <

{
2/λmax(Rn), for LMS, or
2, for NLMS.

(41)

where λmax(Rn) represents the largest eigenvalue of Rn.
Therefore, for small enough stepsizes we can guarantee that
E{ψ̃i} → 0. This should be no surprise, since the adaptive
filters in each node are running independently of each other.

To prove stability and convergence in the mean of the entire
scheme, note that Fi in (40) is block-diagonal, and we just
saw that under (41) the lower diagonal block corresponds to a
stable recursion. We therefore must now show that the spectral
radius of the upper diagonal block, i.e., (IMN − L̄i)G is less
than one. This can be accomplished by showing that there is
an induced norm such that ∥(IMN − L̄i)G∥ < 1 (since any
induced norm upper bounds the spectral radius of a matrix
[56]).

For that we use the block-maximum norm [34]. The block-
maximum norm of a length-MN vector is defined as follows:
partition a length-MN vector into length-M blocks as x =

6This recursion is not linear, since L̄i depends on the autocorrelation (not
the autocovariance) of Θi, and therefore depends also on its mean, Θ̄i.

11

col(x1, . . . , xN) ∈ RMN . Then the block maximum norm is
defined as

∥x∥b,∞ ≜ max
1≤n≤N

∥xn∥, (42)

where from now on ∥ · ∥ denotes the Euclidean norm. For
block matrices an induced norm based on (42) is defined the
usual way: let A ∈ RMN×MN be also partitioned into M×M
blocks An,ℓ and define [34]

∥A∥b,∞ ≜ max
∥x∥b,∞≤1

∥Ax∥b,∞. (43)

Let us now evaluate ∥(IMN − L̄i)G∥b,∞: From the defini-
tions of L̄i = Λ̄i ⊗ IM and G = C ⊗ IM and for any vector
x ∈ RMN with ∥x∥b,∞ ≤ 1, we have

(IMN − L̄i)G

x1...
xN

 =
[
C ⊗ IM − (Λ̄iC)⊗ IM

] x1...
xN

=

∑N

ℓ=1(1− λ̄1(i))c1,ℓxℓ
...∑N

ℓ=1(1− λ̄N (i))cN,ℓxℓ

= col

{
(1− λ̄n(i))

N∑
ℓ=1

cn,ℓxℓ

}
. (44)

Note that each one of the blocks in (44) satisfies∥∥∥∥∥(1− λ̄n(i))

N∑
ℓ=1

cn,ℓxℓ

∥∥∥∥∥ ≤
∣∣1− λ̄n(i)

∣∣ N∑
ℓ=1

cn,ℓ∥xℓ∥

≤ (1− λ̄n(i))

N∑
ℓ=1

cn,ℓ = 1− λ̄n(i),

where we used the facts that (a) ∥x∥b,∞ ≤ 1 ⇒ ∥xℓ∥ ≤ 1,
1 ≤ ℓ ≤ N ; (b) 0 < λ̄n(i) < 1, so

∣∣1− λ̄n(i)
∣∣ = 1 − λ̄n(i);

(c)
∑N

ℓ=1 cn,ℓ = 1.
Recalling that the an(i) are restricted to the interval

[−a+, a+], the λ̄n(i) will stay in the interval

λ̄n(i) ∈
[

1

1 + ea+
,

1

1 + e−a+

]
,

and
0 < 1− λ̄n(i) ≤ 1− 1

1 + ea+
≜ η < 1.

We conclude that ∥(I−L̄i)Gx∥b,∞ ≤ η < 1 for all x ∈ RMN

with ∥x∥b,∞ ≤ 1. This means that ρ((I−L̄i)G) ≤ 1−η < 1,
and thus Θ̄i converges exponentially fast to the origin, that
is, the proposed scheme converges in the mean whenever the
step-sizes µn are chosen so that all node filters are stable.

C. Analysis in the mean square

Multiplying (39) by its transpose and taking expectations,
we obtain recursions for Ti, Si and Ki. The recursion for
Ki is a standard result for LMS or NLMS filters, since
the local filters are operating independently of each other.
We restrict ourselves to the cases of LMS and NLMS only
to keep the argument more concise — if some nodes use
different algorithms (such as RLS), the corresponding models

from the literature can be substituted [20], [21]. Defining
Q = E ξiξ

T
i = Q⊗ 11T , for LMS we have

Ki =

K −RµK −KRµ + diag (Tr(µnRnK)Rn)

+ 2RµKRµ + diag
(
µ2
nσ

2
v,nRn

)
+Q, if δL(i) = 1

Ti−1, if δL(i) = 0.
(45)

whereas an approximate model for NLMS is the recursion [55]

Ki =

K − RµK − KRµ + RµKRµ

+ diag
(

µ2
n

M(M−2)σ4
u,n
σ2
v,nRn

)
+Q, if δL(i) = 1

Ti−1, if δL(i) = 0
(46)

recalling that here we denote K = Ki−1.
For Ti and Si, we obtain

Ti =
(
IMN − L̄

)
GTGT

(
IMN − L̄

)
+ L̄STGT

(
IMN − L̄

)
+
(
IMN − L̄

)
GSL̄+ L̄KL̄+Q, (47)

Si =

(
IMN − L̄

)
GS (IMN −Rµ)

+ L̄K (IMN −Rµ) +Q if δL(i) = 1

Ti−1 if δL(i) = 0.

(48)

where L̄ = L̄i.
A model for the overall algorithm is obtained running (45)–

(48) and (36)–(38) sequentially. Given the highly nonlinear
nature of the problem, we leave a stability analysis of the
recursion for a future work.

VI. SIMULATIONS

In this section we study the three adaptive combiners
described earlier: the MSD-alg algorithm, given by (10); the
LS-alg algorithm, defined in (11); and the proposed U-sup
algorithm, collected in (17).

For ease of reference, we repeat some definitions here, and
introduce others. The input signals {un(i)} are zero-mean
Gaussian sequences generated according to

un(i) = βnun(i− 1) +
√

1− β2
nxn(i), (49)

in which xn(i) is a Gaussian i.i.d. zero-mean signal with unit
variance σ2

x,n = 1, and −1 < βn < 1 is the correlation
factor. The measured signal dn(i) is generated according to the
data model (22). The measurement noise vn(i) is a Gaussian
i.i.d. sequence whose variance σ2

v,n is adjusted at the nodes to
achieve the SNR profiles, randomly selected, that are presented
in each simulation example.

Both stationary and non-stationary scenarios are considered,
so that the M × 1 time-varying unknown plant wo

i follows
the random walk model defined in (23), with initial condition
wo

−1 = 1√
M
1, and qi is a zero-mean, i.i.d. Gaussian vector

process, with covariance matrix Q = σ2
qIM . For stationary

plants, σ2
q = 0 and wo

i = wo. The adaptive network in charge
of tracking such a plant is comprised of N = 15 nodes
equipped with local NLMS filters also with order M = 50, and
step-sizes randomly selected as either µn = 0.1, or µn = 0.01
(except for Example 5), with regularization ϵ = 10−6.

We design scenarios so as to explore the desired properties
for ANs discussed in Section III-A, and to conclude on the

12

universality of the algorithms. The adopted metrics are the
local MSDn(i) and network MSD(i) mean-square deviations
(check (4) and (13)), defined in terms of ψn,i−1 for the non-
cooperative case, in terms of ϕn,i−1 for the MSD-alg case, and
in terms of wn,i for the U-sup and LS-alg. We only present a
few U-sup combiners {E λn(i)}, in order to promote picture
clarity; information on combiners for the other algorithms may
be obtained directly in [36] and [43].

There are three different error figures: the transient curves,
represented by MSD(i) as a function of the iterations; the
steady-state curves, given by MSDn(∞) versus the node
index; and a robustness curve, which depicts global MSD
quantities versus the non-stationarity parameter σ2

q , obtained
as follows. The minimum local MSD across the network,
minn MSDn(∞), is considered for the non-cooperative case;
the distributed algorithms are represented by their maximum
local MSD, i.e., maxn MSDn(∞); in other words, the worst
node in each algorithm must be equal or better than the best
non-cooperative node. Such pictures show how sensitive the
distributed algorithms are with respect to how rapidly the plant
evolves. Notice that universality may be inferred from both the
steady-state and the robustness MSD curves.

The algorithms are compared in fair scenarios, with their
parameters optimized for the set of studied cases. Namely, U-
sup uses µa,n = µa = 0.005 (in Example 4, µa = 5·10−4) and
feedback cycle Ln = L, with either L = 800, or no transfer
of coefficients (L → ∞), νn = 0.9 and ϵp = 0.01. The LS-
alg uses ϵLS = 10−8 and γn = γ = 0.9999; in Example 1
we add one LS-alg curve with γ = 0.99 for comparison, as
suggested by the authors [43].7 The MSD-alg step-size µM is
implemented with κM = 10−5 (this choice resulted in better
performance than the value κM = 0.8 used in [36]) and ϵM =
10−3 (See (14) and (18) in [36]).

In Example 1, we test the ability of the algorithms
in rejecting a low-SNR at a well connected node.
Node 1 has SNR = −4.9 dB and a strict node degree
N̄1 = 8 (the most connected). The N inputs {un(i)}
are white, the unknown vector wo is stationary at first
and the SNR and the stepsizes across the nodes are
SNR=[−4.9, 11.8, 19.1, 15.7, 16.4, 14.5, 13.8, 15.9, 11.7, 12.1,
11.6, 11.1, 18.9, 14.6, 18.1] and µk = 0.1 · [1, 10, 1, 1, 1,
10, 1, 10, 1, 10, 1, 1, 1, 10, 1, 1]. The network topology and the
adaptive combiner mean evolution Eλn(i) for our universal
AN are presented in Figs. 2-(a) and (b). This is a worst case
scenario for the AN: a node subject to a high noise level will
produce poor estimates, that will rapidly spread since Node
1 is well-connected. Fig. 3-(a) shows the network MSD(i)
evolution for a stationary plant and Fig. 3-(b) depicts the
algorithms tracking a non-stationary plant following model
(23), with σ2

q = 5 · 10−6. Figure 3-(a) shows how the LS-alg
can perform very well in some cases where the plant is
either stationary, or varies very slowly, and can be an option
if its extra computational complexity is not a problem; the

7We tested γ ∈ {0.99,0.999,0.9999} in order to obtain the best LS-alg
performance. For all the examples included here, γ = 0.9999 resulted in the
best error levels at steady-state, while γ = 0.99 presented better transient, but
with a considerable degradation after convergence. Different levels for ϵLS

were also considered, although without relevant impact on performance.

1

2

3

45
6

7

8

9

10

11
12 13

14

15

(a) (b)
Fig. 2. Example 1 (White inputs): (a) Network topology; (b) The mean
adaptive combiners Eλn(i) corresponding to Fig. 3-(a).

0 0.5 1 1.5 2 2.5 3 3.5

Iteration i 10
5

-60

-50

-40

-30

-20

-10

0

M
S

D
 (

d
B

)

 Network Mean-Square Deviation

LS-alg (= 0.9999)

MSD-alg

U-sup

No-coop

LS-alg (= 0.99)

(a) (b)

Fig. 3. Example 1 (White inputs): (a) Network MSD(i) for stationary
plant; (b) Network MSD(i) for a random walk plant with σ2

q = 5 · 10−6.

0 2 4 6 8 10 12 14 16

Node n

-18

-16

-14

-12

-10

-8

-6

-4

M
S

D
n
(

)
 -

d
B

 Steady-state Mean-Square Deviation

LS-alg

U-sup

MSD-alg

No-coop

(a)

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

q

2

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

M
S

D
 (

)
-

d
B

 Steady-state Mean-Square Deviation

LS-alg

MSD-alg

U-sup

No-coop

(b)

Fig. 4. Example 1 (White inputs): (a) Steady-state MSDn(∞) for σ2
q =

5 · 10−6 corresponding to Fig. 3-(b); (b) Tracking robustness in terms of
MSD(∞) versus σ2

q : minn MSDn(∞) for the non-cooperative case and
maxn MSDn(∞) for the cooperative algorithms.

dark blue LS-alg curve uses γ = 0.99, presenting a faster
transient, while the blue LS-alg curve uses γ = 0.9999 and
attains a better steady-state performance. However, when the
plant varies faster, as happens in Fig. 3-(b), the LS-alg cannot
keep up, presenting a major drop in performance, while the
U-sup and the MSD-alg perform much better. Figure 4-(a)
presents the steady-state performance MSDn(∞) at the node
level for σ2

q = 5 · 10−6, and one can see that both U-sup and
MSD-alg are universal, while the LS-alg is not. Figure 4-(b)
depicts the robustness of all three methods: for slowly varying
plants, up to a certain degree, the LS-alg performs better
than the other two algorithms. However, as the plant starts
evolving faster, LS-alg degrades more rapidly than the other
algorithms, becoming worse than the non-cooperative case
beyond σ2

q = 5 ·10−8, therefore losing universality. The U-sup
is the only algorithm that outperforms the non-cooperative
case across the entire σ2

q test range, also when σ2
q → 0

(tested, but not shown).
In Example 2, we test the network ability to recruit

and propagate the exceptional Node 1, which is poorly
connected (one connection only). This is the opposite
scenario of Example 1. Figs 5-(a) and (b) respectively
depict the network topology and the mean combiners

13

1

2

3

45
6

7

8

9

10

11
12 13

14

15

(a) (b)

Fig. 5. Example 2 (White inputs): (a) Network topology; (b) The mean
adaptive combiners Eλn(i) corresponding to Fig.6-(a).

0 0.5 1 1.5 2

Iteration i 10
5

-30

-25

-20

-15

-10

-5

0

M
S

D

(d
B

)

 Network Mean-Square Deviation

LS-alg

MSD-alg

U-sup

No-coop

(a)

0 0.5 1 1.5 2

Iteration i 10
5

-16

-14

-12

-10

-8

-6

-4

-2

0

2

M
S

D

(d
B

)

 Network Mean-Square Deviation

LS-alg

MSD-alg

U-sup

No-coop

(b)

Fig. 6. Example 2 (White inputs): (a) Network MSD(i) for a non-stationary
plant with σ2

q = 10−7; (b) Network MSD(i) when σ2
q = 10−5.

0 5 10 15

Node n

-30

-25

-20

-15

-10

-5

M
S

D
n
(

)
 -

d

B

 Steady-state Mean-Square Deviation

LS-alg

MSD-alg

U-sup

No-coop

(a)

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

q

2

-45

-40

-35

-30

-25

-20

-15

-10

-5

M
S

D
 (

)
 -

d

B

 Steady-state Mean-Square Deviation

LS-alg

MSD-alg

U-sup

No-coop

(b)

Fig. 7. Example 2 (White inputs): (a) Steady-state MSDn(∞) for
Fig. 6-(a); (b) Tracking robustness in terms of MSD(∞) versus σ2

q : minn
MSDn(∞) for the non-cooperative case and maxn MSDn(∞) for the
cooperative algorithms.

Eλn(i) for the U-sup algorithm corresponding to the
network MSD depicted in Fig.6-(a). The input data {un(i)}
is white and the plant wo

i again evolves according to
(23). The network SNR and step-sizes are respectively
SNR=[22.5, 11.6, 14.5, 17.7, 10.1, 14.7, 10.3, 18.7, 10.5, 17.8,
15.9, 12.4, 17.8, 15.2, 19.5] and µk = 0.1 · [1, 10, 1, 1, 10, 1,
10, 1, 10, 1, 1, 1, 10, 1, 1]. Figure 6-(a) shows how U-sup
and LS-alg algorithms perform (much) better than the
non-cooperative case, and better than the MSD-alg, when
the time-varying plant evolves under σ2

q = 10−7. Increasing
the plant velocity to σ2

q = 10−5, in Fig. 6-(b), the LS-alg is
nearly 10 dB worse (and still worsening: it has not converged
after 2 · 105 iterations) than the U-sup and MSD-alg, and
worse than the non-cooperative case. Figure 7-(a) corresponds
to the steady-state for Fig. 6-(a), and shows that both U-sup
and LS-alg are universal for σ2

q = 10−7, while the MSD-alg
is not. The algorithm robustness is depicted by Fig. 7-(b),
again confirming that the U-sup is the only algorithm that is
universal across the entire σ2

q test range, also depicting the
LS-alg sensitivity when tracking fast varying plants.

In Example 3, the scenario is what is more likely to
take place in practice, where nodes have approximately

1

2

3

45
6

7

8

9

10

11
12 13

14

15

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

Iteration i 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
n
(i
)

 Universal combiners per node

Node 3

Node 7

Node 8

Node 10

Node 11

(b)

Fig. 8. Example 3 (Correlated inputs): (a) Network topology; (b) The
mean adaptive combiners Eλn(i) corresponding to Figs. 9-(a) and 10-(a).

0 0.5 1 1.5 2 2.5 3 3.5 4

Iteration i 10
5

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

M
S

D
 (

d
B

)

 Network Mean-Square Deviation

LS-alg

MSD-alg

U-sup

No-coop

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

Iteration i 10
5

-25

-20

-15

-10

-5

0

5

M
S

D
 (

d
B

)

 Network Mean-Square Deviation

LS-alg

MSD-alg

U-sup

No-coop

(b)

Fig. 9. Example 3 (Correlated inputs): (a) Network MSD(i) for correlated
inputs and a stationary plant; (b) Network MSD(i) for the same inputs and
a time-varying plant with σ2

q = 10−7.

0 5 10 15

Node n

-45

-40

-35

-30

-25

-20

M
S

D
n
(

)
 -

d

B

 Steady-state Mean-Square Deviation

LS-alg

MSD-alg

U-sup

No-coop

(a)

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

q

2

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

M
S

D
 (

)
 -

d

B

 Steady-state Mean-Square Deviation

LS-alg

MSD-alg

U-sup

No-coop

(b)

Fig. 10. Example 3 (Correlated inputs): (a) Steady-state MSDn(∞); (b)
Tracking robustness in terms of MSD versus σ2

q : minn MSDn(∞) for the
non-cooperative case and maxn MSDn(∞) for the cooperative algorithms.

the same node degree, without a clearly exceptional
or poor node in terms of SNR, and considering
correlated inputs {un(i)} obtained from (49), with
correlation factors {βn} randomly selected from the
two values 0.63 and 0.95 and captured by the vector
β = [0.63, 0.95, 0.63, 0.63, 0.95, 0.63, 0.95, 0.63, 0.95, 0.63,
0.63, 0.63, 0.95, 0.63, 0.63]. Figures 8-(a) and (b) depict
network topology and the mean combiners Eλn(i)
corresponding to Figs. 9-(a) and 10-(a); the former presenting
the performance for a stationary plant, the latter of a
non-stationary plant. The network SNR and step-sizes are
SNR = [12.2, 15.2, 15.5, 15.5, 20, 11.2, 17.2, 12.4, 17.8, 16.1,
12.6, 10.1, 19.5, 12.1, 12.6] and µk = 0.1·[1, 10, 1, 1, 10, 1, 10,
1, 10, 1, 1, 1, 10, 1, 1]. We then test the algorithms when
tracking a non-stationary plant with σ2

q = 10−7 in Fig. 9-(b).
Observe in Figs. 9-(a) and (b) how the U-sup algorithm
outperforms both the MSD-alg and LS-alg algorithms. As
depicted in Figs. 10-(a) and (b), the three algorithms present
a similar performance, however once more only the U-sup
attains universality in the entire test range for σ2

q .
In Example 4, we test the theoretical model developed in

Section V. For that, we revisit the scenario from Example 3,

14

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Iteration i 10
5

-40

-35

-30

-25

-20

-15

-10

-5

0

M
S

D
 (

d
B

)
 Network Mean-Square Deviation

LS-alg

MSD-alg

U-sup

No-coop

U-sup (Model)

(a)

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Iteration i 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E

n
(i
)

 Universal combiners per node

Node 1

Node 2

Node 3

Model - Node 1

Model - Node 2

Model - Node 3

(b)

Fig. 11. Example 4 (Correlated inputs): (a) Network MSD(i) and the
theoretical model for U-sup (dashed red); (b) The mean adaptive combiners
Eλn(i) for a few nodes, corresponding to Fig 11-(a).

0 0.5 1 1.5 2 2.5 3 3.5

Iteration i 10
5

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

M
S

D
 (

d
B

)

 Network Mean-Square Deviation

LS-alg

MSD-alg

U-sup

No-coop

U-sup (Model)

(a)

0 0.5 1 1.5 2 2.5 3 3.5

Iteration i 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E

n
(i
)

 Universal combiners per node

Node1

Node2

Node3

Model, node1

Model, node2

Model, node3

(b)

Fig. 12. Example 5 (White inputs): (a) Network MSD(i) and the theoretical
model for U-sup (dark red); (b) The mean adaptive combiners E λn(i) for
a few nodes and their theoretical model (dashed lines), all corresponding to
Fig. 12-(a).

changing the non-stationarity level for σ2
q = 10−10, and set

the feedback cycle L→ ∞. Figure 11-(a) shows the network
MSD evolution, and Fig. 11-(b) presents the corresponding
mean combiner evolution Eλn(i). Note how the theoretical
model is able to capture the general tendencies correctly.

In Example 5, we test the theoretical model from Section
V for white inputs in a network with N = 8, NLMS AFs
with order M = 6, with the U-sup using L = 800, all
identifying a stationary plant. The stepsizes for this example
are captured by the vector µ = 0.01 · [1, 10, 1, 10, 1, 1, 1, 1].
The network topology is described by the reduced undi-
rected edge set E′ = [12, 13, 18, 24, 25, 34, 56, 58, 67, 78],
in which, for example, the pair 12 means there are edges
between nodes 1 and 2, between node 1 and itself and
between 2 and itself. The SNR across the network is
SNR = [11.2, 10.6, 18.4, 13.4, 17.8, 11.2, 16.8, 10.9]. The
theoretical model is shown in Figs. 12(a) and (b) to describe
well the network MSD performance and the combiner evolu-
tion.

The last example, Example 6, shows the effect of L in a
network with N = 8 and M = 6 as in Example 5. Figure
13 shows the worst node MSD at various iterations during
convergence, for different values of L. One can see how
intermediate values of L (between 10 and 1,000) accelerate
convergence, without affecting the steady-state performance.
In other words, the U-sup algorithm is relatively insensitive to
the choice of L over a wide range.

VII. CONCLUSION

This work has established the concept of universal esti-
mation in the context of distributed adaptive estimation, also
proposing a distributed adaptive protocol capable of attain-
ing distributed global universality, as proved by Theorem 2

2 10 100 1,000 10,000 Inf
L

10−4

10−3

10−2

10−1

M
ax
im

um
 M
SD

Maximum Network MSD
At i=100
At i=1,000
At i=10,000
At i=100,000
At i=1,000,000
At i=1,499,001

Fig. 13. Performance comparison with different values of L for a 8-node
network: worst-case node MSD at various points during convergence. The
values were obtained by averaging the MSD values at each node separately
between instants i and i+ 999, and taking the maximum value between the
nodes.

and shown by several simulations: the distributed supervisor
drives the entire network to the best node performance, also
efficiently rejecting poorly performing nodes, while promoting
performance uniformity across the nodes.

Fair comparisons were carried out with two other directly
competing algorithms, namely the MSD-alg (10) [36], and
the LS-alg (11) [43]. The proposed U-sup algorithm (17) is
the simplest and was the only method to consistently achieve
universality in all tested scenarios, under white and correlated
data, for stationary and fast-varying plants. Algorithm (11)
performs very well for some stationary and slowly varying
plants, however its computational complexity may limit its
use in some applications.

Theoretical mean and mean-square error models were devel-
oped with a reasonable agreement with simulations, capturing
the general tendencies of network MSD and local combiners
Eλn(i), and proving convergence of the algorithm in the
mean. The agreement between simulated and analytical curves
improves as the local AF step-size decreases (µn → 0); in the
distributed case the same effect is further noticed when the
universal combiner stepsize is also decreased, i.e., µa → 0.

REFERENCES

[1] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Connecting the
physical world with pervasive networks,” IEEE Pervasive Computing,
vol. 1, no. 1, pp. 59–69, 2002.

[2] F. Cattivelli and A. Sayed, “Distributed detection over adaptive networks
using diffusion adaptation,” IEEE Trans. Signal Process., vol. 59[5], pp.
1917–1932, 2011.

[3] R. V. Kulkarni, A. Förster, and G. K. Venayagamoorthy, “Computational
intelligence in wireless sensor networks: A survey,” IEEE Communica-
tions Surveys Tutorials, vol. 13, no. 1, pp. 68–96, 2011.

[4] Y. P. Bergamo and C. G. Lopes, “Scalar field estimation using adaptive
networks,” in 2012 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2012, pp. 3565–3568.

[5] A. Scaglione, R. Pagliari, and H. Krim, “Non-cooperative versus co-
operative approaches for distributed network synchronization,” in Fifth
Annual IEEE International Conference on Pervasive Computing and
Communications Workshops (PerComW’07)., 2007, pp. pp. 537–541.

[6] P. Di Lorenzo, S. Barbarossa, and A. H. Sayed, “Distributed spectrum
estimation for small cell networks based on sparse diffusion adaptation,”
IEEE Signal Processing Letters, vol. 20, no. 12, pp. 1261–1265, 2013.

15

[7] X. Zhai, H. Jing, and T. Vladimirova, “Multi-sensor data fusion in
wireless sensor networks for planetary exploration,” in 2014 NASA/ESA
Conf. on Adaptive Hardware and Systems (AHS), 2014, pp. 188–195.

[8] G. S. Vicinansa, Y. P. Bergamo, and C. G. Lopes, “Position estimation
from range measurements using adaptive networks,” in 2016 IEEE
Sensor Array and Multichannel Sig. Proc. Workshop, 2016, pp. 1–5.

[9] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 13, no. 1, pp. 65–78, 2004.

[10] A. Scaglione, R. Pagliari, and H. Krim, “The decentralized estimation of
the sample covariance,” in Proc. Asilomar Conf. Signal, Syst., Comput.,
2008, p. pp. 1722–1726.

[11] I. D. Schizas, G. Mateos, and G. B. Giannakis, “Distributed lms for
consensus-based in-network adaptive processing,” IEEE Transactions on
Signal Processing, vol. 57, no. 6, pp. 2365–2382, 2009.

[12] A. Sandryhaila, S. Kar, and J. M. F. Moura, “Finite-time distributed
consensus through graph filters,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process, 2014, pp. pp. 1080–1084.

[13] S. Kar and J. M. F. Moura, “Convergence Rate Analysis of Distributed
Gossip (Linear Parameter) Estimation: Fundamental Limits and Trade-
offs,” IEEE J. Sel. Top. Signal Process., vol. 5, no. 4, pp. 674–690, Aug.
2011.

[14] P. C. Chen and P. P. Vaidyanathan, “Distributed algorithms for array
signal processing,” IEEE Trans. Signal Process., vol. 69, pp. 4607–4622,
2021.

[15] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adap-
tive networks,” in 2007 IEEE International Conference on Acoustics,
Speech and Sig. Proc. - ICASSP ’07, vol. 3, 2007, pp. III–917–III–920.

[16] ——, “Incremental adaptive strategies over distributed networks,” IEEE
Trans. on Sig. Proc., vol. 55[8], pp. 4064–4077, 2007.

[17] ——, “Diffusion least-mean squares over adaptive networks: Formula-
tion and performance analysis,” IEEE Transactions on Signal Process-
ing, vol. 56[7], pp. 3122–3136, 2008.

[18] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive
least-squares for distributed estimation over adaptive networks,” IEEE
Trans. Signal Process., vol. 56[5], pp. 1865–1877, 2008.

[19] S.-Y. Tu and A. H. Sayed, “Diffusion Strategies Outperform Consensus
Strategies for Distributed Estimation Over Adaptive Networks,” IEEE
Trans. Signal Process., vol. 60, no. 12, pp. 6217–6234, Dec. 2012.

[20] A. Sayed, Adaptive filters. Wiley-IEEE Press, 2008.
[21] P. Diniz, Adaptive filtering: Algorithms and practical implementation,

4th ed. Springer, 2013.
[22] A. H. Sayed and C. G. Lopes, “Distributed recursive least-squares

strategies over adaptive networks,” in 2006 Fortieth Asilomar Conference
on Signals, Systems and Computers, 2006, pp. 233–237.

[23] C. G. Lopes and A. H. Sayed, “Randomized incremental protocols
over adaptive networks,” in 2010 IEEE International Conference on
Acoustics, Speech and Signal Processing, 2010, pp. 3514–3517.

[24] J. Plata-Chaves, N. Bogdanović, and K. Berberidis, “Distributed
diffusion-based lms for node-specific adaptive parameter estimation,”
IEEE Trans. on Sig. Proc., vol. 63, no. 13, pp. 3448–3460, 2015.

[25] C. G. Lopes and A. H. Sayed, “Diffusion adaptive networks with chang-
ing topologies,” in 2008 IEEE International Conference on Acoustics,
Speech and Signal Processing, 2008, pp. 3285–3288.

[26] S. Chouvardas, K. Slavakis, and S. Theodoridis, “Adaptive robust
distributed learning in diffusion sensor networks,” IEEE Transactions
on Signal Processing, vol. 59, no. 10, pp. 4692–4707, 2011.

[27] I. Harrane, R. Flamary, and C. Richard, “On reducing the communi-
cation cost of the diffusion lms algorithm,” IEEE Trans. on Sig. and
Information Proc. over Networks, vol. 5, no. 1, pp. 100–112, 2019.

[28] D. Jin, J. Chen, C. Richard, J. Chen, and A. H. Sayed, “Affine
combination of diffusion strategies over networks,” IEEE Transactions
on Signal Processing, vol. 68, pp. 2087–2104, 2020.

[29] ——, “Convex combination of diffusion strategies over networks,” IEEE
Trans. on Sig. and Inf. Proc. over Networks, vol. 6, pp. 714–731, 2020.

[30] B. Bollobás, Modern Graph Theory. Springer, 1998.
[31] R. Arablouei, S. Werner, Y. F. Huang, and K. Doğançay, “Distributed

least mean-square estimation with partial diffusion,” IEEE Transactions
on Signal Processing, vol. 62, no. 2, pp. 472–484, 2014.

[32] M. O. Sayin and S. S. Kozat, “Compressive diffusion strategies over dis-
tributed networks for reduced communication load,” IEEE Transactions
on Signal Processing, vol. 62, no. 20, pp. 5308–5323, 2014.

[33] S.-Y. Tu and A. Sayed, “Optimal combination rules for adaptation and
learning over networks,” in Int. Workshop on Computational Advances
in Multi-Sensor Adaptive Proc. IEEE, 2011, pp. 317–320.

[34] A. Sayed, Adaptation, Learning, and Optimization over Networks.
NOW Publishers, 2014.

[35] S. Werner, Y.-F. Huang, M. L. R. de Campos, and V. Koivunen, “Dis-
tributed parameter estimation with selective cooperation,” in 2009 IEEE
International Conference on Acoustics, Speech and Signal Processing,
Apr. 2009, pp. 2849–2852, iSSN: 2379-190X.

[36] N. Takahashi, I. Yamada, and A. Sayed, “Diffusion least-mean squares
with adaptive combiners: Formulation and performance analysis,” IEEE
Trans. Signal Process., vol. 58[9], pp. 4795–4810, 2010.

[37] J. Fernandez-Bes, L. Azpicueta-Ruiz, M. Silva, and J. Arenas-Garcia,
“A novel scheme for diffusion networks with least-squares adaptive
combiners,” in International Workshop on Machine Learning for Signal
Processing. IEEE, 2012, pp. 1–6.

[38] C. G. Lopes, V. H. Nascimento, and L. F. O. Chamon, “Towards spatially
universal adaptive diffusion networks,” in 2014 IEEE Global Conference
on Signal and Information Processing. IEEE, 2014, pp. 803–807.

[39] J. Arenas-Garcı́a, A. Figueiras-Vidal, and A. Sayed, “Mean-square
performance of a convex combination of two adaptive filters,” IEEE
Trans. Signal Process., vol. 54[3], pp. 1078–1090, 2006.

[40] R. Candido, M. T. M. Silva, and V. H. Nascimento, “Transient and
steady-state analysis of the affine combination of two adaptive filters,”
IEEE Trans. on Sig. Proc., vol. 58[10], no. 10, pp. 4064–4078, 2010.

[41] N. Merhav and M. Feder, “Universal prediction,” IEEE Trans. Inf.
Theory, vol. 44[6], pp. 2124–2147, 1998.

[42] A. Singer and M. Feder, “Universal linear prediction by model order
weighting,” IEEE Trans. on Sig. Proc., vol. 47[10], pp. 2685–2699, 1999.

[43] J. Fernandez-Bes, J. Arenas-Garcia, M. T. M. Silva, and L. A. Azpicueta-
Ruiz, “Adaptive diffusion schemes for heterogeneous networks,” IEEE
Trans. Signal Process., vol. 65[21], pp. 5661–5674, 2017.

[44] V. H. Nascimento and M. T. M. Silva, “Adaptive filters,” in Academic
Press Library in Signal Processing:, R. Chellappa and S. Theodoridis,
Eds. Chennai: Academic Press, 2014, vol. 1, Signal Processing Theory
and Machine Learning, pp. 619—761.

[45] R. G. Gallager, Discrete Stochastic Processes. Kluwer Academic
Publishers, 1996.

[46] Y. Zhang and J. Chambers, “Convex combination of adaptive filters for
a variable tap-length LMS algorithm,” IEEE Signal Process. Lett., vol.
13[10], pp. 628–631, 2006.

[47] L. Azpicueta-Ruiz, A. Figueiras-Vidal, and J. Arenas-Garcı́a, “A nor-
malized adaptation scheme for the convex combination of two adaptive
filters,” in ICASSP 2008, 2008, pp. 3301–3304.

[48] M. Silva and V. Nascimento, “Improving the tracking capability of
adaptive filters via convex combination,” IEEE Trans. Signal Process.,
vol. 56[7], pp. 3137—-3149, 2008.

[49] V. Nascimento, M. Silva, R. Candido, and J. Arenas-Garcı́a, “A transient
analysis for the convex combination of adaptive filters,” in IEEE
Statistical Signal Processing Workshop (SSP), 2009, pp. 53–56.

[50] C. G. Lopes, E. H. Satorius, P. Estabrook, and A. H. Sayed, “Adaptive
carrier tracking for mars to earth communications during entry, descent,
and landing,” IEEE Trans. Aer. and Elec. Systems, vol. 46[4], pp. 1865–
1879, 2010.

[51] L. Chamon, W. Lopes, and C. Lopes, “Combination of adaptive filters
with coefficients feedback,” in International Conference on Acoustics,
Speech and Signal Processing, 2012, pp. 3785–3788.

[52] A. E. Feitosa, V. H. Nascimento, and C. G. Lopes, “Adaptive detection in
distributed networks using maximum likelihood detector,” IEEE Signal
Processing Letters, vol. 25, no. 7, pp. 974–978, 2018.

[53] N. Cesa-Bianchi and G. Lugosi, “On prediction of individual sequences,”
Annals of Statistics, vol. 27[6], pp. 1865–1895, 1999.

[54] J. Arenas-Garcia, L. Azpicueta-Ruiz, M. Silva, V. Nascimento, and
A. Sayed, “Combinations of Adaptive Filters: Performance and con-
vergence properties,” IEEE Signal Processing Magazine, vol. 33, no. 1,
pp. 120–140, Jan. 2016.

[55] M. Tarrab and A. Feuer, “Convergence and performance analysis of
the normalized LMS algorithm with uncorrelated Gaussian data,” IEEE
Trans. Inform. Theory, vol. 34, no. 4, pp. 680–691, Jul. 1988.

[56] R. Horn and C. Johnson, Matrix Analysis. Cambridge Univ. Press,
2013.

16

Cássio G. Lopes (S’06–M’08–SM’16) received his
B.S. degree and M.S. degrees in electrical engineer-
ing from the Federal University of Santa Catarina,
Brazil, in 1997 and 1999, respectively, and M.S.
and Ph.D. degrees in electrical engineering from the
University of California, Los Angeles (UCLA) in
2004 and 2008, respectively. From 2005 to 2007
he worked in a joint UCLA/NASA Jet Propulsion
Laboratory project to develop frequency tracking
algorithms to support direct-to-Earth Mars commu-
nications during entry, descent, and landing. In 2008

he worked at the Instituto Tecnologico de Aeronautica (ITA) Sao Jose dos
Campos, Brazil as a postdoctoral researcher, developing distributed estimation
algorithms for inertial navigation. In 2008 he joined the Department of
Electronic Systems of the University of Sao Paulo (USP), Polytechnic School,
where he is an associate professor of electrical engineering since 2014. From
2014 to 2018 he worked in a joint USP/EMBRAER project to enhance
acoustic emission techniques for Structural Health Monitoring (SHM) of
aircrafts. His current research interests are theory and methods for adaptive
and statistical signal processing, distributed adaptive estimation, geometric
algebra and tensor adaptive processing, as well as SHM.

Vı́tor H. Nascimento obtained the B.S. and
M.S. degrees in Electrical Engineering from Escola
Politécnica, University of São Paulo, Brazil, in 1989
and 1992, respectively, and the Ph.D. degree from
the University of California, Los Angeles, in 1999.
From 1990 to 1994 he was a Lecturer at the Univ. of
São Paulo, and in 1999 he joined the faculty at the
same school where his now Professor and chair of
the Dept. of Electronic Systems Engineering. One of
his papers received the 2002 IEEE SPS Best Paper
Award. He served as an Associate Editor for the

IEEE Signal Processing Letters from 2003 to 2005, for the IEEE Transactions
on Signal Processing from 2005 to 2008 and for the EURASIP Journal on
Advances in Signal Processing from 2006 to 2009, and as a Senior Area Editor
for the IEEE Trans. on Signal Processing (2018-2021). He was a member of
the IEEE-SPS Signal Processing Theory and Methods Technical Committee
(2007 -2012 and 2016-2021). From 2010 to 2014 he was chair of the São
Paulo IEEE-SPS Chapter, and between 2012 and 2016 he served as area
editor for the Journal of Communication and Information Systems. He was
Technical Chair of the 2014 International Telecommunications Symposium,
organized in São Paulo by the Brazilian Telecommunications Society (SBrT),
of the 2016 IEEE Sensor Array and Multichannel Signal Processing Workshop
(Rio de Janeiro, Brazil), and of the 2021 IEEE Statistical Signal Processing
Workshop (Rio de Janeiro). His research interests include signal processing
theory and applications, statistical methods for epidemiology, adaptive and
sparse estimation, distributed learning, structural health monitoring, array
signal processing, and applied linear algebra.

Luiz F. O. Chamon received the B.Sc. and M.Sc.
degrees in electrical engineering from the Univer-
sity of São Paulo, São Paulo, Brazil, in 2011 and
2015 and the Ph.D. degree in electrical and sys-
tems engineering from the University of Pennsyl-
vania (Penn), Philadelphia, in 2020. Until 2022, he
was a postdoctoral fellow at the Simons Institute
of the University of California, Berkeley. He is
currently an independent research group leader at the
University of Stuttgart, Germany. In 2009, he was
an undergraduate exchange student of the Masters

in Acoustics of the École Centrale de Lyon, Lyon, France, and worked as an
Assistant Instructor and Consultant on nondestructive testing at INSACAST
Formation Continue. From 2010 to 2014, he worked as a Signal Processing
and Statistics Consultant on a research project with EMBRAER. He received
both the best student paper and the best paper awards at IEEE ICASSP
2020 and was recognized by the IEEE Signal Processing Society for his
distinguished work for the editorial board of the IEEE Transactions on
Signal Processing in 2018. His research interests include optimization, signal
processing, machine learning, statistics, and control.

