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Abstract—This study formulates a novel precoding criterion
for multiuser MIMO systems based on the minimization of
the symbol error probability at the users. Unlike previous
formulations that require the symbols to belong to a QPSK
modulation the proposed criterion allows the utilization of PSK
modulation in general. Based on the proposed minimum symbol
error probability criterion a discrete programming problem is
derived. Using a sophisticated branch-and-bound method the
proposed precoding problem is optimally solved. Numerical
results show that the proposed precoding method outperforms
the state-of-the-art techniques for all examined SNR values in
terms of symbol-error-rate.

Index Terms—Energy Efficiency, Precoding, Constant En-
velope, Low-Resolution Quantization, MIMO systems, Symbol
Error Probability.

I. INTRODUCTION

Multiuser multiple-input multiple-output (MU-MIMO) sys-
tems are considered as a promising physical-layer technique
and are expected to be vital for the future of wireless commu-
nications networks [1]. However, due to the high number of
radio frequency front ends (RFFE) the energy consumption of
the radio frequency chains imposes a challenge for this kind
of technology [2].

This energy efficiency (EE) challenge led to the develop-
ment of different studies that analyzed the circuit of RFFEs
to dissect which are the most consuming elements, e.g., [3],
[4]. These works conclude that the power amplifiers (PAs)
and data converters are two of the most consuming elements
in the RFFE. With this, many of the recent studies consider
adopting features to minimize the power consumption of these
elements. In most cases, to increase the PA’s efficiency the
adoption of constant envelope (CE) signaling is considered,
and, to decrease the power consumption of the data converters,
low-resolution in amplitude is utilized. The main drawback of
adopting these features is the error-rate performance degrada-
tion they yield.

To mitigate the performance degradation CE low-resolution
precoding has received increasing attention from the wireless
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communications community. Linear approaches, e.g., [5]–[7],
have benefit from a relatively low computational complexity.
However, to achieve higher reliability nonlinear symbol-level-
precoding methods have been presented based on different
design criteria. Two of the most popular criteria used for
precoding are the minimum mean squared error (MMSE)
used in [8]–[14] and the maximum minimum distance to
the decision threshold (MMDDT) which is utilized in [11],
[15]–[21]. Aside from MMSE and MMDDT, the work from
[22] proposed the direct optimization of the symbol error
probability (SEP) for the 1-bit quantization case.

Following the direction from the work in [22] the present
study considers the minimization of the SEP as the design cri-
terion and focuses on the development of precoding techniques
for a MU-MIMO downlink system with PSK modulation and
phase quantization.

The novel formulation is developed based on the minimiza-
tion of the union bound SEP (MUBSEP) which then allows
for the utilization of PSK modulation in general. Based on
this formulation an optimization problem is devised which
is optimally solved using a sophisticated branch-and-bound
(B&B) method.

Numerical results confirm that the proposed B&B algorithm
based on the MUBSEP formulation outperforms other state-
of-the-art methods in terms of symbol-error-rate (SER) for
medium and high SNR values.

The remainder of this paper is organized as follows: Sec-
tion II describes the system model, whereas Section III exposes
the derivation of the formulation utilized for precoding. Sec-
tion IV presents the design of the proposed B&B precoder.
Section V presents and discusses numerical results, while
Section VI gives the conclusions.

Regarding the notation, bold lower case and upper case
letters indicate vectors and matrices, respectively. Non-bold
letters express scalars. The operators (·)∗ and (·)T denote
complex conjugation and transposition, respectively. Real
and imaginary part operator, as well as the functions erfc(·),
erf(·) and log(·), are also applied to vectors and matrices,
e.g., Re {x} = [Re {[x]1} , . . . ,Re {[x]M}]T . The operator
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ŝ2

ŝK

Fig. 1: Multiuser MIMO downlink with discrete precoding

R(·) converts a complex-valued vector into the equivalent
real-valued notation. For a given column vector a ∈ CM the
equivalent real-valued vector ar = R(a) reads as

ar =
[
Re {a1} Im {a1} · · · Re {aM} Im {aM}

]T
. (1)

The inverse operation is denoted as C(·) which converts
equivalent real-valued notation into complex-valued. Finally,
for the given vectors a and b, P(a = b) denotes the
probability of the event a = b.

II. SYSTEM MODEL

The system model, illustrated in Fig. 1, consists of a single-
cell MU-MIMO scenario where the BS has perfect channel
state information (CSI) and is equipped with M transmit
antennas serving K single antenna users.

In this study, a symbol level transmission is considered
where sk represents the data symbol for the k-th user. Each
symbol sk is considered to belong to the set S that represents
all possible symbols of a αs-PSK modulation and is given by

S =
{
s : s = e

jπ(2i+1)
αs , for i = 1, . . . , αs

}
. (2)

The symbols of all users are described in a stacked vector
notation as s = [s1, . . . , sK ]T ∈ SK . It is considered that dif-
ferent users’ symbols are independent and that P (sk = si) =
1/αs,∀i ∈ {1, . . . , αs}. Based on s the precoder computes
the transmit vector x = [x1, . . . , xM ]T . The entries of x are
constrained to the set X which is given by

X =

{
x : x =

√
Ptx

M
e

jπ(2i+1)
αx , for i = 1, . . . , αx

}
. (3)

The vector x is transmitted over a frequency flat fading
channel described by the matrix H ∈ CK×M such that the
received signal corresponding to the k-th user reads as

zk = yk + wk = hk x+ wk, (4)

where yk is the noiseless received signal from the k-th user,
hk is the k-th row of the channel matrix H and the complex
random variable wk ∼ CN (0, σ2

w) represents additive white

Gaussian noise (AWGN). Using stacked vector notation (4)
can be extended to

z = y +w = H x+w, (5)

where z = [z1 . . . zK ]
T , y = [y1 . . . yK ]

T and w =
[w1 . . . wK ]

T . Each received symbol zk is, then, hard detected
based on which decision region it belongs to, meaning that zk
is detected as si if zk ∈ Si. In the case of PSK modulation,
the decision regions are circle sectors with infinite radius and
angle of 2θ, where θ is given by θ = π/αs. With this, the
estimated symbol from the k-th user is given by ŝk = HD(zk),
where HD(·) represents the hard detection operation. Finally,
the detected symbol vector is written as ŝ = [ŝ1, . . . , ŝK ].

III. MUBSEP PRECODING FORMULATION

The probability of detecting the data vector s conditioned
on the transmit vector x can be computed based on the
probabilities of detection of the individual users as

P(ŝ = s|x) =
K∏

k=1

P(ŝk = sk|x) . (6)

To simplify the notation we denote P(ŝ = s|x) as P(ŝ|x) and
P(ŝk = sk|x) as P(ŝk|x). With this, (6) is rewritten as

P(ŝ|x) =
K∏

k=1

P(ŝk|x) . (7)

As stated before, the detector decides for sk when the received
symbol zk belongs to Sk. Thus, the individual user probabil-
ities are given by

P (ŝk|x) = P (zk ∈ Sk|x) =
1

πσ2
w

∫
Sk

e
−|t−yk|2

σ2
w dt. (8)

The integral from (8) has tabled solutions for αs ∈ {2, 4}. Yet,
for αs /∈ {2, 4}, (8) requires the utilization of Monte Carlo
methods, which are not suitable for symbol-level-precoding
algorithms due to their relatively high computation complexity.
Thus, to achieve a general design, the maximization of a lower
bound on the probability of correct detection is considered.

The union bound states that for any finite or countable set of
events, the probability that at least one of the events happens
is smaller or equal than the sum of the probabilities of the
individual events [23], meaning

P

(⋃
i

Ai

)
≤
∑
i

P(Ai). (9)

with Ai representing an event. With this, the error probability
for the k-th user, Pe (ŝk|x), can be bounded by

Pe (ŝk|x) = P (zk ∈ Z1 ∪ Z2|x)
≤ P (zk ∈ Z1|x) + P (zk ∈ Z2|x) , (10)

where the sets Z1 and Z2 are depicted in Fig. 2. The individual
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Fig. 2: Representation of the union bound

probabilities can be computed based on the minimum distances
to the decision thresholds (MDDTs), d1,k and d2,k, as

P (zk ∈ Z1|x) =
∫ ∞

d1,k

1√
πσ2

w

e
− t2

σ2
w dt =

1

2
erfc

(
d1,k
σw

)
P (zk ∈ Z2|x) =

∫ ∞

d2,k

1√
πσ2

w

e
− t2

σ2
w dt =

1

2
erfc

(
d2,k
σw

)
.

The MDDTs are computed, similarly to in [16] and [20], by
applying a rotation of arg{s∗k} = −ϕsk to the coordinate
system such that the symbol of interest is placed on the real
axis. This is done by multiplying both sk and yk by e−jϕsk

which results in e−jϕsk sk = 1 and ωk = e−jϕsk yk . Based on
the rotated coordinate system the MDDTs are computed as

d1,k (x) = Re {s∗khkx} sin θ − Im {s∗khkx} cos θ (11)
d2,k (x) = Re {s∗khkx} sin θ + Im {s∗khkx} cos θ. (12)

Using (10) to (12) one can construct a bound on the probability
of correct detection of the k-th user as

P (ŝk|x) = 1− Pe (ŝk|x)
≥ 1− (P (zk ∈ Z1|x) + P (zk ∈ Z2|x))

= 1− 1

2
erfc

(
d1,k (x)

σw

)
− 1

2
erfc

(
d2,k (x)

σw

)
=

1

2
erf
(
d1,k (x)

σw

)
+

1

2
erf
(
d2,k (x)

σw

)
. (13)

The probability of correct detection can then be bounded by
the union bound probability, meaning P(ŝ|x) ≥ Pub(ŝ|x), with

Pub(ŝ|x) =
1

2K

K∏
k=1

(
erf
(
d1,k (x)

σw

)
+ erf

(
d2,k (x)

σw

))
.

Based on Pub(ŝ|x) an optimization problem can be cast as

max
x∈XM

K∏
k=1

(
erf
(
d1,k (x)

σw

)
+ erf

(
d2,k (x)

σw

))
. (14)

Since log (·) is a monotonically increasing function, applying
it to the objective from (14) yields an equivalent problem.
With this, the proposed MUBSEP optimization problem for
an αs-PSK modulation reads as

min
x∈XM

−
K∑

k=1

log

(
erf
(
d1,k (x)

σw

)
+ erf

(
d2,k (x)

σw

))
. (15)

An equivalent real-valued formulation of (15) can be cast as

min
xr

−
K∑

k=1

log
(
erf
(
uT
1,kxr

)
+ erf

(
uT
2,kxr

))
(16)

s.t. xr,2m−1 + jxr,2m ∈ X for m = 1, . . . ,M .

where xr = R(x), u1,k =
(
hs∗

R,θ,k − hs∗

I,θ,k

)T
and u2,k =(

hs∗

R,θ,k + hs∗

I,θ,k

)T
with hs∗

R,θ,k and hs∗

I,θ,k being the k-th rows

of matrices Hs∗

R,θ and Hs∗

I,θ. The matrices Hs∗

R,θ and Hs∗

I,θ are
given by Hs∗

R,θ = sin(θ)
σw

Hs∗

R , and Hs∗

I,θ = cos(θ)
σw

Hs∗

I , with

Hs∗

R =Re{hs∗

11} −Im{hs∗

11} · · · Re{hs∗

1M} −Im{hs∗

1M}
...

...
...

...
...

Re{hs∗

K1} −Im{hs∗

K1} · · · Re{hs∗

KM} −Im{hs∗

KM}


Hs∗

I = Im{hs∗

11} Re{hs∗

11} · · · Im{hs∗

1M} Re{hs∗

1M}
...

...
...

...
...

Im{hs∗

K1} Re{hs∗

K1} · · · Re{hs∗

KM} Im{hs∗

KM}

 ,

where hs∗

ij is the element of the i-th row and j-th column of
the matrix Hs∗ = diag {s∗}H .

A. Conditions for convexity of the MUBSEP objective

Considering the real-valued formulation described in (16)
the MUBSEP objective can be cast as

g(xr) = −
K∑

k=1

log
(
erf
(
uT
1,kxr

)
+ erf

(
uT
2,kxr

))
. (17)

Convexity can be proven by evaluating the conditions under
which the Hessian is positive semi-definite (PSD) [24]. To
this end, the Hessian is calculated in what follows. Taking the
derivative of g(xr) with respect to xr yields

∂g(xr)

∂xr
= −

K∑
k=1

∂

∂xr
log
(
erf
(
uT
1,kxr

)
+ erf

(
uT
2,kxr

))
= −

K∑
k=1

∂
∂xr

(
erf
(
uT
1,kxr

)
+ erf

(
uT
2,kxr

))
erf
(
uT
1,kxr

)
+ erf

(
uT
2,kxr

)
= −

K∑
k=1

2√
π
e−(u

T
1,kxr)

2

u1,k + 2√
π
e−(u

T
2,kxr)

2

u2,k

erf
(
uT
1,kxr

)
+ erf

(
uT
2,kxr

) .

Note that ∂g(xr)
∂xr

can be written in the form

∂g(xr)

∂xr
= −

K∑
k=1

mk(xr)

qk(xr)

where

mk(xr) =
2√
π

e−(u
T
1,kxr)

2

u1,k +
2√
π

e−(u
T
2,kxr)

2

u2,k

qk(xr) = erf
(
uT
1,kxr

)
+ erf

(
uT
2,kxr

)
.



The Hessian is, then, given by

∂2g(xr)

∂xr∂xT
r

= −
K∑

k=1

∂mk(xr)
∂xT

r
qk(xr)−mk(xr)

∂qk(xr)
∂xT

r

(qk(xr))
2 .

The terms ∂mk(xr)
∂xT

r
and ∂qk(xr)

∂xT
r

are calculated as

∂mk(xr)

∂xT
r

= − (Ψ1,k +Ψ2,k)

∂qk(xr)

∂xT
r

= mT
k (xr),

where Ψ1,k and Ψ2,k read as

Ψ1,k =
4√
π
e−(u

T
1,kxr)

2

u1,ku
T
1,kxru

T
1,k

Ψ2,k =
4√
π
e−(u

T
2,kxr)

2

u2,ku
T
2,kxru

T
2,k.

The Hessian then reads as

∂2g(xr)

∂xr∂xT
r

=

K∑
k=1

(Ψ1,k +Ψ2,k) qk(xr) +mk(xr)m
T
k (xr)

(qk(xr))
2 .

A sufficient condition for PSD is (Ψ1,k +Ψ2,k) qk(xr) ⪰
0 ∀ k ∈ {1, . . .K}. With this, positive semi-definiteness is
guaranteed for uT

1,kxr ≥ 0 ∀ k ∈ {1, . . .K} and uT
2,kxr ≥

0 ∀ k ∈ {1, . . .K}. Finally, the condition for convexity of the
MUBSEP objective function can be cast in a stacked manner
for all k as [

Hs∗

R,θ −Hs∗

I,θ

Hs∗

R,θ +Hs∗

I,θ

]
xr ⪰ 0. (18)

From these results, convexity can be guaranteed by restricting
the original feasible set using the condition from (18). With
this, a convex MUBSEP optimization problem can be formu-
lated as

min
xr

−
K∑

k=1

log
(
erf
(
uT
1,kxr

)
+ erf

(
uT
2,kxr

))
(19)

s.t.

[
Hs∗

R,θ −Hs∗

I,θ

Hs∗

R,θ +Hs∗

I,θ

]
xr ⪰ 0,

xr,2m−1 + jxr,2m ∈ X for m = 1, . . . ,M .

Note that, the optimal solution from (15) is not necessarily
the same as the optimal solution from (19). However, different
solutions are only possible if the constraint described in (18) is
active. This would imply that for at least one user, the optimal
solution of (15) yields a noiseless received symbol yi in the
incorrect decision region. This leads to a SEP, for this user,
greater than half. This is, in general, not a relevant case, since
future wireless communications systems will be designed to
provide high reliability and avoid this kind of scenario.

IV. OPTIMAL MUBSEP PRECODING DESIGN VIA
BRANCH-AND-BOUND

In this section, we propose a B&B algorithm that solves
optimally the discrete programming problem (DPP) described
in (19). In what follows, the main aspects of the proposed
B&B algorithm are exposed.

A. Initialization via convex hull relaxation

The first part of the proposed MUBSEP B&B method is
an initialization step where a feasible solution is computed by
solving a relaxed MUBSEP problem. To this end, the discrete
feasible set XM is relaxed to its convex hull P . Note that P
is a polyhedron and thus can be described as the solution set
of a finite number of linear equalities and inequalities [24].
Similarly as done in [13], [14] and [16] the relaxed feasible
set is described in real-valued notation using the inequality
R
[
xT

r , 1
]T ⪯ 0, where R =

[
A, −b

]
and

A =
[
(IM ⊗ β1)

T , (IM ⊗ β2)
T , . . . , (IM ⊗ βαx

)T
]T

,

βi =
[
cos
(

2πi
αx

)
, − sin

(
2πi
αx

)]
, i ∈ {1, . . . , αx} ,

b =

√
Ptx

M
cos

(
π

αx

)
1Mαx

. (20)

With this, one can readily write the relaxed MUBSEP problem
by substituting XM by P in (19), which then yields

min
xr

−
K∑

k=1

log
(
erf
(
uT
1,kxr

)
+ erf

(
uT
2,kxr

))
(21)

s.t.

[
Hs∗

R,θ −Hs∗

I,θ

Hs∗

R,θ +Hs∗

I,θ

]
xr ⪰ 0, R

[
xT

r , 1
]T ⪯ 0.

Replacing XM by P yields a convex problem since (21) is
the minimization of a convex objective under a convex set.

The solution of the relaxed problem is termed xr,lb which
can be written in complex form as xlb = C (xr,lb). Note that,
xlb ∈ P can also belong to the original feasible set XM as
P∩XM ̸= ∅. If this is the case, xlb is also the optimal solution
from (19) and no further processing is required. However, if
xlb /∈ XM the solution xlb must be projected to XM .

The projection method utilized in this study is uniform
quantization (UQ). When using this approach the projected
vector is given by xub = Q(xlb), where Q(·) represents
the quantization operation. The quantization criterion utilized
is based on the elementwise Euclidean distance. By this
approach, the p-th entry of xub, denoted as xub,p, is computed
as xub,p = arg min

i∈{1...αx}
|xlb,p − xi|2, where xlb,p denotes the

p-th entry of xlb and xi the i-th element of X . Note that,
the quantized vector xub attains the low-resolution constraints,
meaning xub ∈ XM and thus could be used for transmission.

As mentioned before if xlb ∈ XM the algorithm returns xlb
and no further processing is required. However, if xlb /∈ XM ,
the initial smallest known upper bound ǧ and its corresponding
vector x̌ are stored as ǧ = g(xub) and x̌ = xub, with the
objective g(x) given by

g(x) = −1T
K log (erf (α1 (x)) + erf (α2 (x))) , (22)

where

α1 (x) = Re {H sx} − Im {Hcx} ,
α2 (x) = Re {H sx}+ Im {Hcx} ,

H s =
sin(θ)

σw
diag(s∗)H, Hc =

cos(θ)

σw
diag(s∗)H.
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Fig. 3: Tree representation of the set XM for a system with M = 2 BS
antennas and QPSK precoding modulation (αx = 4)

B. Assembling the Tree
A B&B algorithm is a tree search-based method where the

tree represents the feasible set which, in this study, is XM .
For the construction of the tree, it is considered that the p-th
BS antenna represents the p-th layer and each possibility for
a subvector f ∈ X p represents one branch. With this, the tree
has M layers with αM

x branches in the last layer. An example
of a tree representation of the feasible set is shown in Fig. 3
for the case of M = 2 BS antennas and QPSK signaling.

C. Subproblem formulation
In a B&B algorithm, a DPP is solved by considering

partially fixed subvectors and computing upper and lower
bounds to evaluate if the fixed subvector is part of the optimal
solution.

As mentioned in subsection IV-B, the branches of the tree
represent a subvector f ∈ X p for the p-th layer. With this, the
subproblems are derived by fixing, for each branch, the corre-
sponding subvector f and optimizing the remaining subvector

v ∈ XM−p, with the total vector given by x =
[
fT , vT

]T
.

Yet, such that the optimization problems are real-valued, xr is
considered instead of x, with this

xr =
[
fT

r , vT
r

]T
, (23)

where for the p-th layer, the length of the fixed subvector
f r is 2p and, consequently, the length of the subvector vr is
2(M − p). The subproblems are then derived based on the
formulation presented by (21) for the relaxed problem.

The MUBSEP subproblems are written considering the
minimization of the real-valued version of objective function
shown in (19) for a given f r. To this end, the matrices Hs∗

R
and Hs∗

I are divided as

Hs∗

R =
[
F s∗

R,θ , V s∗

R,θ

]
Hs∗

I =
[
F s∗

I,θ , V s∗

I,θ

]
. (24)

With this, the convex subproblem associated with the fixed
subvector f r is given by

min
vr

−1T
K (log (erf (λ1 (vr)) + erf (λ2 (vr))))

s.t.

[
V s∗

R,θ − V s∗

I,θ

V s∗

R,θ + V s∗

I,θ

]
vr ⪰ −

[
F s∗

R,θ − F s∗

I,θ

F s∗

R,θ + F s∗

I,θ

]
f r,

R′ [vT
r , 1
]T ⪯ 0. (25)

where

λ1 (vr) =F s∗

R,θf r + V s∗

R,θvr − F s∗

I,θf r + V s∗

I,θvr (26)

λ2 (vr) =F s∗

R,θf r + V s∗

R,θvr + F s∗

I,θf r + V s∗

I,θvr. (27)

and R′ represents the last 2(M − p) columns of R.

D. Tree Search Process

For the tree search process, breadth-first search is consid-
ered. The process starts by setting the layer value p = 1
and, accordingly, solving the subproblems which yields the

solution vr,lb|f . The vector xlb|f =
[
fT , C

(
vr,lb|f

)T ]T
is,

then, constructed and the value of g(xlb|f ) is computed and
stored. The solution subvector vlb|f is quantized to XM−p

which yields vub|f = Q(vlb|f ). With this, one can construct

xub|f =
[
fT ,vT

ub|f

]T
. Note that xub|f ∈ XM is an upper

bound solution meaning g(xopt) ≤ g(xub|f ), with xopt being
the optimal solution.

To evaluate if g(xub|f ) is the smallest known upper bound
the condition g(xub|f ) < ǧ is checked. If true, the smallest
known upper bound and its corresponding value of x are
updated as ǧ = g(xub|f ) and x̌ = xub|f .

After all possible valid branches in one layer are evaluated,
i.e., all valid values of f were fixed and its conditioned upper
and lower bounds computed, the lower bounds are evaluated
against ǧ. If ǧ < g(xlb|f ) then conditioned subvector f cannot
be a subvector of the optimal solution xopt and f and all its
evolutions can be excluded from the search process. In the
context of tree search, this means pruning the branch of f
from the tree.

After pruning, the set of valid f subvectors is updated
and the algorithm repeats this process in the next layer. In
the last layer, it is expected that only a few valid candidate
solutions remain. With this, they are all evaluated against x̌
and the optimal value is determined by the vector that yields
the minimum value of the objective function. The steps of the
MUBSEP B&B algorithm are detailed in Algorithm 1.

Algorithm 1 Proposed MUBSEP B&B Precoding Algorithm
Inputs: H , s, X Output: xopt
Solve (21) to get xr,lb and compute xub = Q(C(xr,lb))
If xub == C(xr,lb)

return xopt = xub
end if
Define x̌ = xub and compute ǧ = g(x̌) using (22)
Define the first level (p = 1) of the tree by Gp := X
for p = 1 : M − 1 do

Partition Gp in f1, . . . ,f |Gp|
for i = 1 : |Gp| do

Conditioned on f r,i = R(f i) solve (25) to get vr,lb|fi

Construct xlb,i =
[
fT

i , C
(
vr,lb|fi

)T ]T
Determine the lower bound glb,i = g(xlb,i)
Compute the upper bound solution xub,i = Q(xlb,i)
Compute the upper bound gub,i = g(xub,i) with (22)
Update ǧ = min (ǧ, gub,i) and update x̌ accordingly

end for
Construct a reduced set by comparing conditioned lower
bounds with the global upper bound ǧ
G′
p := {xlb,i | glb,i < ǧ, i = 1, . . . , |Gp|}

Define the set for the next level in the tree: Gp+1 := G′
p ×X

end for
The global solution is xopt = argmin

x∈{GM∪{x̌}}
g(x)
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Fig. 4: SER versus SNR for K = 3, M = 14, αs = 8, αx = 4

V. NUMERICAL RESULTS

In this section, the proposed MUBSEP B&B algorithm is
evaluated in terms of SER. To this end, the SNR is defined as
SNR = ∥x∥2

2/σ2
w. In terms of the channel coefficients Rayleigh

fading is considered [25] as done in [5], [15], [16].
The proposed method is evaluated against the following

state-of-the-art approaches: 1-The 1-bit MMDDT B&B pre-
coder [19]; 2-The MMSE B&B precoder [13]; 3- The MMSE
Mapped precoder [13]; 4- The MSM precoder [16] and 5- The
unquantized Linear MMSE precoder [26].

The considered MIMO scenario has a BS with M = 14
antennas which serve K = 3 users with user symbols drawn
for an 8-PSK modulation and transmit symbols drawn from
a QPSK modulation, meaning that αs = 8 and αx = 4. The
results are depicted in Fig. 4

Fig. 4 shows that the proposed MUBSEP B&B method
outperforms, in terms of SER, the MMSE B&B method for the
intermediate and high-SNR regimes while presenting similar
SER for low-SNR. Moreover, the proposed MUBSEP B&B
approach outperforms all other methods for all examined SNR
values.

VI. CONCLUSION

In this study, the novel MUBSEP criterion is formulated.
Based on the novel formulation an optimal low-resolution
precoding method was proposed using the branch-and-bound
algorithm. Numerical results show that the proposed precoding
method outperforms the state-of-the-art techniques for medium
and high SNR values.
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