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Abstract—This study proposes two MMSE symbol-level pre-
coding approaches considering a strict per antenna power con-
straint and PSK modulation for perfect and imperfect channel
state information scenarios. The proposed designs are formulated
as second-order cone programs, allowing for an optimal solution
via the interior point method. Numerical results confirm that, for
the scenario with perfect channel state information, the proposed
designs outperform the existing techniques in terms of bit-error-
rate for low and intermediate signal-to-noise-ratio. Numerical
evaluations also confirm the superiority of the proposed robust
MMSE design in the presence of channel state information
imperfection.

Index Terms—MMSE, symbol-level precoding, strict per an-
tenna power constraint, MIMO systems, second-order cone
programming.

I. INTRODUCTION

Massive multiuser multiple-input multiple-output (MU-
MIMO) systems are considered as a promising technology
and are expected to be vital for future wireless communi-
cations networks [1]. For MU-MIMO systems a fundamental
problem is the design of low-complexity precoding algorithms
that attain the high reliability constraints of future wireless
communications networks.

Linear techniques such as zero forcing (ZF) and matched
filtering [2], [3] are known to be asymptotically optimal [4]
for massive MIMO systems due to the favorable propagation
effects that rise for infinitely large arrays. However, when
considering linear precoding, an established assumption in the
literature [5], [6] is that the transmit symbols are constrained
by an average total power constraint (TPC). This yields a
system that is easier to model, yet, according to [7], in a
realistic scenario each base station (BS) antenna is connected
to its own power amplifier (PA) and thus has to meet its
specific power constraints.

With this, several precoding techniques arose considering
per antenna power constraints (PAPC). Linear channel-level
precoding strategies considering an average PAPC are well
studied in the literature [8], [9], [10], [11]. However, according
to [12], the consideration of a strict PAPC (SPAPC) yields
a more realistic scenario since the transmit power at each
antenna is upper bounded by a threshold to avoid severe
distortion at the PA due to clipping. With this, different
linear precoding techniques have been developed considering
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SPAPCs [12], [13]. More recently, the symbol-level precoding
(SLP) strategy has been receiving increasing attention since it
allows for a higher degree of reliability. In [14] a SLP method
is devised considering a per antenna transmit power mini-
mization under the condition of attaining quality of service
constraints for M-PSK modulations. In [15] SLP is considered
with a SPAPC and two novel strategies based on the concept
of strict and non strict rotation for constructive interference
(CI) based precoding are proposed. SLP is considered also
with other constraints, e.g., low-resolution [16], [17], [18] and
constant envelope [19].

Besides the aforementioned concepts, one of the most
prominent design criteria in the literature is the minimum mean
squared error (MMSE). The MMSE utilization ranges from the
established channel-level linear precoding strategy presented
in [5] to a SLP design considering coarse quantization [20].
Although prominent in the literature to the best of the authors’
knowledge the MMSE objective has not been considered for
SLP under a SPAPC.

In this context, by considering a SPAPC this study pro-
poses two SLP techniques for PSK modulation. While the
first method utilizes the MMSE criterion considering perfect
channel state information (CSI) at the transmitter, the second
approach allows for imperfect CSI scenarios by exploiting
knowledge about second order statistics of the CSI mismatch.
The proposed approaches are formulated in the standard
second-order cone programming (SOCPs) form and are readily
solved with polynomial complexity using the interior points
method (IPM). Numerical results indicate that the proposed
MMSE methods are superior to the existing techniques in
terms of BER for the low and medium SNR regime. More-
over, regarding CSI imperfection the proposed robust MMSE
(RMMSE) design outperforms the examined state-of-the-art
algorithms for all values of CSI mismatch.

The remainder of this paper is organized as follows: Sec-
tion II describes the system model. Section III exposes the
MMSE and RMMSE optimization problems, formulates them
as SOCPs and provides the complexity analysis of the pro-
posed algorithms. Section IV presents and discusses numerical
results, while Section V gives the conclusions.

Regarding the notation, bold lower case and upper case
letters indicate vectors and matrices, respectively. Non-bold
letters express scalars. The operator (·)𝑇 denotes transposition.
𝑆𝑛+ denotes the set of symmetric positive semidefinite matrices
of dimension 𝑛 × 𝑛. The operator 𝑅(·) converts a complex-
valued vector into the equivalent real-valued notation. For
a given column vector 𝒂 ∈ C𝑀 the equivalent real-valued
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vector 𝒂r = 𝑅(𝒂) reads as

𝒂r =
[
Re {𝒂1} Im {𝒂1} · · · Re {𝒂𝑀 } Im {𝒂𝑀 }

]𝑇
. (1)

For a given matrix 𝑨 ∈ C𝐾×𝑀 the equivalent real-valued
matrix 𝑨r = 𝑅(𝑨) is given by

𝑨r = (2)

Re {𝑎11} −Im {𝑎11} · · · Re {𝑎1𝑀 } −Im {𝑎1𝑀 }
Im {𝑎11} Re {𝑎11} · · · Im {𝑎1𝑀 } Re {𝑎1𝑀 }

...
. . .

...

Re {𝑎𝐾1} −Im {𝑎𝐾1} · · · Re {𝑎𝐾𝑀 } −Im {𝑎𝐾𝑀 }
Im {𝑎𝐾1} Re {𝑎𝐾1} · · · Im {𝑎𝐾𝑀 } Re {𝑎𝐾𝑀 }


.

The inverse operation is denoted as 𝐶 (·) which converts
equivalent real-valued notation into complex-valued notation.

II. SYSTEM MODEL

The system model consists of a single-cell MU-MIMO
scenario where the BS is equipped with 𝑀 transmit antennas
serving 𝐾 single antenna users. A symbol level transmission is
considered where 𝑠𝑘 represents the data symbol to be delivered
for the 𝑘-th user. Each symbol 𝑠𝑘 is considered to belong to
the set S that represents all possible symbols of a 𝛼𝑠-PSK
modulation and is given by

S =

{
𝑠 : 𝑠 = 𝑒

𝑗 𝜋 (2𝑖+1)
𝛼𝑠 , for 𝑖 = 1, . . . , 𝛼𝑠

}
. (3)

The symbols of all users are described in a stacked vector
notation as 𝒔 = [𝑠1, . . . , 𝑠𝐾 ]𝑇 ∈ S𝐾 . Based on 𝒔 the precoder
computes the transmit vector 𝒙 = [𝑥1, . . . , 𝑥𝑀 ]𝑇 . The entries
of 𝒙 are constrained by a SPAPC, meaning |𝑥𝑚 |2 ≤ PA
for 𝑚 ∈ {1, . . . , 𝑀}, where PA represents the maximum
per antenna transmit power. A frequency flat fading channel
described by the matrix 𝑯 ∈ C𝐾×𝑀 is considered. The BS
is considered to receive the CSI coefficients from the users
which corresponds to the matrix 𝑯̃ ∈ C𝐾×𝑀 , which implies
spatial correlation E{𝑯̃𝐻

𝑯̃} = 𝐾𝑹s. It is considered that the
spatial correlation matrix 𝑹s can be estimated and is known at
the BS. It is considered that the spatial correlation is modeled
by the Kronecker model [21], which implies that the entries of
𝑹s are in the form of [𝑟s]𝑖, 𝑗 = 𝜌 (𝑖− 𝑗 )

2
for (𝑖, 𝑗) ∈ {1, . . . , 𝑀}2.

The factor 𝜌 ∈ [0, 1] is the correlation index of neighboring
antennas. In this study the channel model is described by

𝑯 = 𝑵𝑯̃ +
√︁
𝑰 − 𝑵2𝚿𝑹

1
2
s . (4)

The matrix 𝑵 = diag (𝜼), with 𝜼 = [𝜂1, . . . , 𝜂𝐾 ] ∈ [0, 1]𝐾
describes the user-specific quality of the CSI which can also be
interpreted as the temporal correlation factor. It is considered
that 𝑵 can be estimated and is known at the BS. The matrix
𝚿, with 𝝍𝑘 ∼ CN(0, 𝑰) being the 𝑘-th row of 𝚿 for 𝑘 ∈
{1, . . . 𝐾}, describes the random part of the channel model.
The received signal for all users 𝒛 can be described as

𝒛 = 𝑯𝒙 + 𝒘, (5)

with its 𝑘-th entry 𝑧𝑘 being the received signal from the 𝑘-th
user. The vector 𝒘 ∼ CN

(
0, 𝜎2

𝑤 𝑰
)

represents additive white
Gaussian noise (AWGN). Each received symbol 𝑧𝑘 is detected

as 𝑠𝑘 = 𝐷 (𝑧𝑘) where 𝑠𝑘 denotes the detected symbol for the
𝑘-th user and 𝐷 (·) the hard detection operation.

III. PROPOSED MMSE PRECODING DESIGNS UNDER A
STRICT PER ANTENNA POWER CONSTRAINT

In this section, we propose SLP designs based on the MMSE
objective under a SPAPC for two different scenarios. In the
first scenario perfect CSI is considered, meaning 𝑯̃ = 𝑯. In
the second scenario, it is considered that the BS has imperfect
CSI and knowledge about the matrices 𝑯̃, 𝑵 and 𝑹s. The
MMSE objective, similar as proposed in [5], can be utilized
under a SPAPC with the following problem

min
𝒙,𝛽

E
{
∥𝛽𝒛 − 𝒔∥2

2
}

(6)

s.t. |𝑥𝑚 |2 ≤ PA, for 𝑚 ∈ {1, . . . , 𝑀} , 𝛽 ≥ 0.

Note that the real-valued factor 𝛽 represents a theoretical
automatic gain control which is part of the established MMSE
objective as proposed in [5]. The factor 𝛽 is computed by the
precoder alongside the transmit vector 𝒙. Yet, since in this
study PSK modulation is considered, knowledge of 𝛽 is not
required for hard detection.

A. Proposed MMSE SPAPC Design

The MMSE optimization problem from (6) can be rewritten
by substituting 𝒛 in the objective which yields

min
𝒙 ,𝛽

E{∥𝛽𝑯𝒙 + 𝛽𝒘 − 𝒔∥2
2} (7)

s.t. |𝑥𝑚 |2 ≤ PA, for 𝑚 ∈ {1, . . . , 𝑀} , 𝛽 ≥ 0.

Note that 𝒙 is a complex-valued vector and 𝛽 a real-valued
scaling factor. Since most established optimization algorithms
consider real-valued variables, the problem from (7) is in the
following rewritten in a real-valued notation which yields

min
𝒙r ,𝛽

E{∥𝛽𝑯r 𝒙r + 𝛽𝒘r − 𝒔r∥2
2} (8)

s.t.
{
[𝒙r]2

2𝑚−1 + [𝒙r]2
2𝑚

}
≤ PA, for 𝑚 ∈ {1, . . . , 𝑀} , 𝛽 ≥ 0,

where 𝒘r = 𝑅(𝒘), 𝒔r = 𝑅(𝒔) and 𝑯r = 𝑅(𝑯), with the
operator 𝑅(·) introduced in (1) and (2). Considering that
perfect CSI is available at the BS, i.e., 𝑯 = 𝑯̃, the problem
from (8) can be expressed as an equivalent problem with

min
𝒙r ,𝛽

𝛽2𝒙𝑇r 𝑯
𝑇
r 𝑯r 𝒙r − 2𝛽𝒙𝑇r 𝑯𝑇r 𝒔r + 𝛽2𝐾𝜎2

𝑤 (9)

s.t.
{
[𝒙r]2

2𝑚−1 + [𝒙r]2
2𝑚

}
≤ PA, for 𝑚 ∈ {1, . . . , 𝑀} , 𝛽 ≥ 0.

If 𝛽 ≥ 0 would be constant, the objective would be a convex
quadratically constrained quadratic program (QCQP), since
𝑯𝑇r 𝑯r ∈ 𝑆2𝑀

+ , [22, Sec. 4.4]. Yet, the objective is in general
not jointly convex in 𝛽 and 𝒙r [23, Appendix]. Nevertheless, it
can be rewritten as an equivalent convex function by substitut-
ing the optimization variable 𝒙r. In this context, we introduce
a new optimization variable 𝒙s = 𝛽𝒙r, similar as done in [20],
[24]. With this, the optimization problem described in (9) can
be rewritten as

min
𝒙s ,𝛽

𝒙𝑇s 𝑯
𝑇
r 𝑯r𝒙s − 2𝒙𝑇s 𝑯𝑇r 𝒔r + 𝛽2𝐾𝜎2

𝑤 (10)

s.t. [𝒙s]2
2𝑚−1 + [𝒙s]2

2𝑚 ≤ 𝛽2PA, for 𝑚 ∈ {1, . . . , 𝑀} , 𝛽 ≥ 0.
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The problem can be written in matrix form as

min
𝒗

𝒗𝑇𝑼𝒗 + 𝒑𝑇𝒗 (11)

s.t. ∥𝑬𝑚𝒗∥2 ≤ 𝒈𝑇𝒗, for 𝑚 ∈ {1, . . . , 𝑀} ,
𝒂𝑇𝒗 ≤ 0

where 𝒗 =
[
𝛽, 𝒙𝑇s

]𝑇 , 𝒂 =
[
−1, 0𝑇

]𝑇 , 𝒈 =
[√

PA, 0𝑇
]𝑇 , 𝒑 =[

0,−2𝒔𝑇r 𝑯r
]𝑇 ,

𝑼 =

[
𝐾𝜎2

𝑤 0
0𝑇 𝑯𝑇r 𝑯r

]
, 𝑬𝑚 =

[
0 0
0𝑇 diag (𝒅𝑚)

]
, (12)

with 𝒅𝑚 ∈ R2𝑀×1 being a vector of zeros with ones at entries
2𝑚 − 1 and 2𝑚. Note that, the problem described in (11)
is convex. In what follows it transformed into a SOCP in
standard form, which significantly facilitates implementation.
By introducing the additional variable 𝑡, cf. [22, Sec. 4.1.3],
the problem can be written with quadratic constraints as

min
𝑡 ,𝒗

𝒑𝑇𝒗 + 2𝑡 + 1 (13)

s.t. ∥𝑬𝑚𝒗∥2 ≤ 𝒈𝑇𝒗, for 𝑚 ∈ {1, . . . , 𝑀} ,
𝒗𝑇𝑼𝒗 ≤ 2𝑡 + 1
𝒂𝑇𝒗 ≤ 0.

Note that, since 𝑼 ∈ 𝑆2𝑀+1
+ , it can be written as 𝑼 = 𝑳𝑇𝑳,

with 𝑳 = 𝑼
1
2 . By substituting 𝑼 = 𝑳𝑇𝑳 and adding 𝑡2 at both

sides of the quadratic constraint the problem is rewritten as

min
𝑡 ,𝒗

𝒑𝑇𝒗 + 2𝑡 (14)

s.t. ∥𝑬𝑚𝒗∥2 ≤ 𝒈𝑇𝒗, for 𝑚 ∈ {1, . . . , 𝑀} ,
𝒖𝑇𝑳𝑇𝑳𝒖 + 𝑡2 ≤ (𝑡 + 1)2

𝒂𝑇𝒗 ≤ 0.

By using stacked vector notation in the form of the new
optimization variable 𝒖 =

[
𝒗𝑇 , 𝑡

]𝑇 and taking the square root
of the quadratic constraint the problem can be rewritten as

min
𝒖

𝒓𝑇𝒖 (15)

s.t. ∥𝑭𝑚𝒖∥2 ≤ 𝒍𝑇𝒖, for 𝑚 ∈ {1, . . . , 𝑀} ,
| |𝑮𝒖 | |2 ≤ 𝒒𝑇𝒖 + 1
𝒐𝑇𝒖 ≤ 0,

where 𝒓 =
[
𝒑𝑇 , 2

]𝑇 , 𝒍 =
[
𝒈𝑇 , 0

]𝑇 , 𝒒 =
[
0𝑇 , 1

]𝑇 , 𝒐 =
[
𝒂𝑇 , 0

]𝑇 ,

𝑭𝑚 =

[
𝑬𝑚 0
0𝑇 0

]
, 𝑮 =

[
𝑳 0
0𝑇 1

]
, (16)

The problem described in (15) is a SOCP, cf. [22, Sec. 4.4.2],
and can be readily solved with IPM. The solution can be
converted back to complex-valued notation by extracting 𝒙s

and 𝛽 from 𝒖opt and applying 𝒙 = 𝐶

(
𝒙s
𝛽

)
.

B. Proposed Robust MMSE SPAPC Precoding Design

In this subsection, we propose an SLP design based on the
MMSE objective under a SPAPC considering knowledge of
𝑯̃, 𝑵 and 𝑹s. Such that the MMSE objective under imperfect
CSI is written in real-valued notation the matrices 𝑯̃r = 𝑅(𝑯̃),

𝑵r = 𝑅(𝑵), 𝚿r = 𝑅(𝚿) and 𝑹s,r = 𝑅(𝑹s) are defined.
With this, the real-valued channel matrix can be written as
𝑯r = 𝑵r𝑯̃r +

√︃
𝑰 − 𝑵2

r 𝚿r𝑹
1
2
s,r. By substituting 𝑯r in (6) and

considering E
{
𝑯̃
𝑇

r 𝚿r

}
= 0 the RMMSE problem reads as

min
𝒙r ,𝛽

𝛽2𝒙𝑇r

(
𝑯̃
𝑇

r 𝑵
2
r 𝑯̃r + 𝛾𝑹s,r

)
𝒙r − 2𝛽𝒙𝑇r 𝑯̃

𝑇

r 𝑵r𝒔r + 𝛽2𝐾𝜎2
𝑤

s.t.
{
[𝒙r]2

2𝑚−1 + [𝒙r]2
2𝑚

}
≤ PA, for 𝑚 ∈ {1, . . . , 𝑀} , 𝛽 ≥ 0,

where 𝛾 = trace(𝑰 − 𝑵2
r ). As before, this proposed objective

is not jointly convex in 𝒙r and 𝛽. Yet, an equivalent convex
problem can be cast by substituting 𝒙s = 𝛽𝒙r, which yields

min
𝒙s ,𝛽

𝒙𝑇s

(
𝑯̃
𝑇

r 𝑵
2
r 𝑯̃r + 𝛾𝑹s,r

)
𝒙s − 2𝒙𝑇s 𝑯̃

𝑇

r 𝑵r𝒔r + 𝛽2𝐾𝜎2
𝑤

s.t. [𝒙s]2
2𝑚−1 + [𝒙s]2

2𝑚 ≤ 𝛽2PA, for 𝑚 ∈ {1, . . . , 𝑀} , 𝛽 ≥ 0.

The problem can be written in matrix form as

min
𝒗

𝒗𝑇𝑼̃𝒗 + 𝒑̃𝑇𝒗 (17)

s.t. ∥𝑬𝑚𝒗∥2 ≤ 𝒈𝑇𝒗, for 𝑚 ∈ {1, . . . , 𝑀} ,
𝒂𝑇𝒗 ≤ 0

where

𝑼̃ =

[
𝐾𝜎2

𝑤 0
0𝑇 𝑯̃

𝑇

r 𝑵
2
r 𝑯̃r + 𝛾𝑹s,r

]
, 𝒑̃ =

[
0

−2𝑯̃𝑇r 𝑵r𝒔r

]
,

and the other quantities are defined in (12). Note that, since
𝑼̃ ∈ 𝑆2𝑀+1

+ the problem is convex. By following the same
steps utilized in the section III-A one can write the problem
described in (17) as the following SOCP

min
𝒖

𝒓̃𝑇𝒖 (18)

s.t. ∥𝑭𝑚𝒖∥2 ≤ 𝒍𝑇𝒖, for 𝑚 ∈ {1, . . . , 𝑀} ,����𝑮̃𝒖
����

2 ≤ 𝒒𝑇𝒖 + 1
𝒐𝑇𝒖 ≤ 0,

where

𝒓̃ =

[
𝒑̃
2

]
, 𝑮̃ =

[
𝑳̃ 0
0𝑇 1

]
, 𝑳̃ = 𝑼̃

1
2 (19)

and the other quantities are defined in (16). As before the
problem described in (18) is a SOCP, cf. [22, Sec. 4.4.2],
and can be readily solved with IPM. The solution can be
converted back to complex-valued notation by extracting 𝒙s

and 𝛽 from 𝒖opt and applying 𝒙 = 𝐶

(
𝒙s
𝛽

)
. Note that, the

MSE associated to the solution of (17) is lower bounded

by ˘MSE (𝒔r) = 𝐾 − 𝒔𝑇r 𝑵
𝑇
r 𝑯̃r

(
𝑯̃
𝑇

r 𝑵
2
r 𝑯̃r + 𝛾𝑹s,r

)−1
𝑯̃
𝑇

r 𝑵r𝒔r.
This MSE bound, which is greater than zero due to the CSI
imperfection, is computed by considering the unconstrained
version of (17).

C. About the Complexity of the Proposed Designs

As mentioned the MMSE and the RMMSE optimization
problems are SOCPs and thus can be solved via IPM. Accord-
ing to [25], the number of iterations of the primal-dual IPM
can be upper bounded by

√
𝑛 log (𝑛/𝜖tol) where 𝑛 is the number

of variables and 𝜖tol is the predefined optimality tolerance.
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Fig. 1: BER × SNR for 𝐾 = 15, 𝑀 = 15, 𝛼𝑠 = 4, 𝜼 = 1, 𝜌 = 0

Note that, the complexity of the iterations is dominated by
solving a linear system needed to compute the primal-dual
search direction. With this, considering that the linear systems
can be solved with complexity O

(
𝑛3) via Gauss-Jordan elim-

ination, the total complexity of the proposed approaches can
be upper bounded by O

(
𝑀3.5 log (𝑀/𝜖tol)

)
.

IV. NUMERICAL RESULTS

In this section, the proposed precoders are evaluated in
terms of BER and computational complexity and compared
with other state-of-the-art designs. To this end, the SNR is
defined as SNR = (𝑀 ·PA )/𝜎2

𝑤 . The proposed methods are
evaluated against the following state-of-the-art approaches: 1-
The ZF SPAPC precoder [15]; 2- The CVX-CIO precoder
[7] designed for constant envelope; 3- The Strict CI SPAPC
precoder [15]; 4- The Non-Strict CI SPAPC precoder [15] and
5- The LMMSE precoder [5] (average TPC).

A. BER evaluation under perfect CSI

In this subsection, a BER × SNR evaluation is considered
assuming no spatial correlation, i.e., 𝜌 = 0 and perfect CSI.
In this context, the considered MIMO scenario consists of a
BS with 𝑀 = 15 antennas serving 𝐾 = 15 users with QPSK
user symbols, meaning that 𝛼𝑠 = 4. As can be seen in Fig. 1,
the proposed methods outperform the existing approaches in
terms of BER for the low and intermediate SNR regimes.
For high-SNR, the proposed MMSE precoders outperform all
investigated approaches except for the Non-Strict CI-based
precoder [15]. This is expected since it is known that CI is
nearly optimal for high SNR [26] and the MMSE criterion is
favorable for low and medium SNR [20].

B. BER evaluation under imperfect CSI

In this subsection, the proposed approaches are evaluated in
terms of BER with CSI imperfection. The evaluated MIMO
scenario consists of a BS with 𝑀 = 50 antennas which serves
𝐾 = 5 users with 𝛼𝑠 = 8. To facilitate the analysis during
this subsection it is considered 𝜼 = 𝜉1, meaning that all
channels have the same CSI quality. The CSI imperfection
is then expressed in terms of 𝜆2 =

√︁
1 − 𝜉2.
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Fig. 2: BER × 𝜆2 for 𝐾 = 5, 𝑀 = 50, 𝛼𝑠 = 8, 𝜌 = 0 and SNR= 12 dB

0.2 0.4 0.6 0.8 1
10−3

10−2

10−1

𝜌

B
E

R

ZF-PAPC [15] CVX-CIO [7]

Strict CI PAPC [15] Non Strict CI PAPC [15]

LMMSE TPC [5] Proposed MMSE PAPC

Proposed RMMSE PAPC

Fig. 3: BER × 𝜌 for 𝐾 = 5, 𝑀 = 50, 𝛼𝑠 = 8, 𝝀2 = 0.2 and SNR= 12 dB

The first experiment consists of a BER performance evalu-
ation for different levels of CSI imperfection under an SNR of
12 dB. For this experiment no spatial correlation is considered,
meaning 𝜌 = 0. As can be seen in Fig. 2 the proposed
RMMSE SPAPC design outperforms in terms of BER all
other examined SPAPC state-of-the-art approaches for 𝜆2 > 0.
Moreover, the proposed RMMSE approach yields similar
performance in terms of BER as the LMMSE [5] (average
TPC) design for very low CSI quality (𝜆2 > 0.8).

The second experiment consists of a BER performance
evaluation against the spatial correlation factor 𝜌 for SNR = 12
dB and 𝜆2 = 0.2. As shown in Fig. 3, the proposed RMMSE
approach outperforms in terms of BER all examined SPAPC
designs for all examined 𝜌. Moreover, it also outperforms the
LMMSE design for 𝜌 > 0.5.

Finally, the third experiment consists of a BER × SNR
evaluation considering both imperfect CSI and spatial corre-
lation with the parameters 𝜆2 = 0.2 and 𝜌 = 0.15. As can be
seen in Fig. 4, the proposed RMMSE precoder outperforms
all other SPAPC approaches in terms of BER. Note that,
both proposed MMSE and RMMSE approaches yield similar
performance for low SNR. Starting from medium SNR, as
the SNR grows, the proposed RMMSE approach deviates in
performance from the proposed MMSE counterpart. Finally,
for very high SNR (SNR > 27.5 dB) the proposed RMMSE
approach shows significant advantage and outperforms also the
LMMSE method (average TPC).
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C. Complexity Analysis

As discussed in section III-C the complexity of the proposed
methods is upper bounded by O

(
𝑀3.5 log (𝑀/𝜖tol)

)
. Table I

summarizes the complexity of the considered approaches.

TABLE I: Computational Complexity of the Precoding Algorithms

Algorithm Complexity

ZF SPAPC [15] O
(
𝐾2𝑀

)
CVX-CIO [7] O

(
𝑀3.5 log

(
𝑀/𝜖tol

) )
Strict CI SPAPC [15] O

(
𝑀3.5 log

(
𝑀/𝜖tol

) )
Non-Strict CI SPAPC [15] O

(
𝑀3.5 log

(
𝑀/𝜖tol

) )
Linear MMSE TPC [5] O

(
𝐾3 )

Proposed MMSE SPAPC O
(
𝑀3.5 log

(
𝑀/𝜖tol

) )
Proposed RMMSE SPAPC O

(
𝑀3.5 log

(
𝑀/𝜖tol

) )
Note that, the optimization based state-of-the-art algorithms

(namely CVX-CIO [7], Strict CI SPAPC [15] and Non-Strict
CI SPAPC [15]) can be transformed in standard form SOCPs
which can be solved via the primal-dual IPM with complexity
O

(
𝑀3.5 log (𝑀/𝜖tol)

)
. With this, it can be concluded that these

approaches yield similar complexity as the proposed methods.

V. CONCLUSIONS

This study proposes two symbol-level precoding approaches
considering a SPAPC and PSK modulation for perfect and
imperfect CSI. The proposed precoding designs are formulated
as SOCPs and are solved using the IPM in polynomial time.
Numerical results confirm that for the perfect CSI scenario
the proposed designs are superior to the existing techniques in
terms of BER for low and intermediate SNR. Moreover, when
considering imperfect CSI numerical evaluations underline the
superiority of the proposed robust MMSE design.
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