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Abstract

In this work, we present an energy-efficient distributed learning framework using coarsely quantized signals for Internet of
Things (IoT) networks. In particular, we develop a distributed quantization-aware recursive least-squares (DQA-RLS) algorithm
that can learn parameters in an energy-efficient fashion using signals quantized with few bits while requiring a low computational
cost. Moreover, we develop a bias compensation strategy to further improve the performance of the proposed DQA-RLS algorithm.
We carry out a statistical analysis of the proposed DQA-RLS algorithm and derive analytical expressions for predicting the
mean-square deviation. A computational complexity evaluation and a study of the power consumption of the proposed and existing
techniques are then presented. Numerical results assess the DQA-RLS algorithm against existing techniques for a distributed
parameter estimation task in a scenario where IoT devices operate in peer-to-peer mode.

Index Terms

distributed learning, energy-efficient signal processing, adaptive algorithms, coarse quantization

I. INTRODUCTION

D ISTRIBUTED signal processing algorithms are of great relevance for statistical inference in wireless networks and
applications such as wireless sensor networks (WSNs) [1], [2], the Internet of Things (IoT) [3], [4], distributed optimization

[5]–[7] and smart grid implementations [8], [9]. In fact, distributed signal processing techniques deal with the extraction of
information from data collected at nodes that are distributed over a geographical area. In this context, for each node a set
of neighbor nodes collects and processes their local information, and then transmits their estimates to a specific node. Upon
reception of the possibly noisy estimates, each specific node combines the collected information together with its local estimate
to generate improved estimates.

A. Prior and Related Work

Prior work on distributed signal processing techniques has studied protocols for exchanging information [10]–[12], adaptive
learning algorithms [13], the exploitation of sparse measurements [14], [15], topology adaptation [16], [17], and robust techniques
against interference and noise [18], [19]. Even though there have been many studies that evaluated the need for data exchange
and signaling among nodes as well as their computational complexity, prior work on energy-efficient techniques is rather limited.

In this context, energy-efficient signal processing techniques have gained a great deal of interest in the last decade or so due
to their ability to save energy and promote sustainable development of electronic systems and devices. Electronic devices often
exhibit a power consumption that is strongly dependent on the analog-to-digital converters (ADCs) and the number of bits used
to represent digital samples [20]. This is of central importance to devices that are battery-operated and to wireless networks
that must keep the power consumption to a low level for sustainability reasons. In particular, prior work on energy efficiency
has reported many contributions in signal processing for communications and electronic systems that operate with coarsely
quantized signals [21]–[24].

Among the methods to reduce the energy consumption of networks are: i) compression of the communication data between
neighbor nodes and ii) coarse quantization with ADCs of signals measured by sensors. Communication-efficiency techniques
enable IoT devices to reduce their energy consumption with data transmission and reduce the communication bandwidth, and
have been reported in adaptive networks [25]–[27]. On the other hand, IoT devices contain many sensors that allow them to
interact with the physical world, collecting and processing streaming data in real time. They integrate various sensors such as
temperature, humidity, accelerometer, gyroscope, magnetometer, altimeter, heart rate, light, microphone, camera, battery monitor,
infrared proximity, gas, ultraviolet and capacitive sensors. The total energy-consumption and cost of these sensors affect the
energy-consumption and the cost of IoT devices [28]. The type of sensor determines the accuracy of the analog interface and
the resolution of ADCs. The ADC resolution requirement varies greatly with the sensing application, ranging from 6 to 16
bits (see [28] Table 1). This emphasizes the importance of energy-efficient techniques that deal with the coarse quantization
of measurement data to enable IoT devices to work with the low energy-consumption sensors. To this end, a distributed
quantization-aware least-mean square (DQA-LMS) algorithm was proposed in [29], [30] to reduce the power consumption of
ADCs in adaptive IoT networks in an energy-efficient framework.
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B. Contributions

In this work, we present an energy-efficient distributed learning framework using coarsely quantized signals for Internet of
Things (IoT) networks. In particular, we develop a distributed quantization-aware recursive least-squares (DQA-RLS) algorithm
that can learn parameters in an energy-efficient fashion using signals quantized with few bits while requiring a low computational
cost. Moreover, we develop a closed-form bias compensation strategy to further improve the performance of the proposed
DQA-RLS algorithm. We then carry out a statistical analysis of the proposed DQA-RLS algorithm along with a computational
complexity and a power consumption evaluation of the proposed and existing techniques. Numerical results assess the DQA-RLS
algorithm against existing techniques for a distributed parameter estimation task in a scenario where IoT devices operate in
peer-to-peer mode.

The DQA-LMS has the simplicity and properties of LMS-type algorithms whereas the DQA-RLS algorithm has the fast
convergence property of RLS-type algorithms [31] even with high correlated inputs. Moreover, one can easily extend the
Quantization-Aware framework to other distributed adaptive algorithms inspired by the results obtained from DQA-LMS and
DQA-RLS algorithms. For instance, the dichotomous coordinate descent (DCD) algorithm [32], [33] and the partial-diffusion
recursive least-squares (PDRLS) algorithm [25] have been successfully used for significant reduction in the complexity and
communication cost of RLS algorithms, respectively, and can be incorporated in the quantization-aware framework presented
here to reduce the complexity, the communication cost and the power consumption together.

The main contributions of this work can be summarized as:
• The proposed DQA-RLS algorithm and a bias compensation strategy for processing signals quantized with few bits.
• An analysis of the DQA-RLS algorithm in terms of mean and mean-square performance, computational complexity and

power consumption is carried out.
• A simulation study of DQA-RLS, the bias compensation strategies and existing techniques along with a validation of the

theoretical expressions obtained in the analysis.
This paper is structured as follows: Section II introduces the signal model and states the problem. Section III details the

derivation of the proposed DQA-RLS algorithm. Section IV is devoted to the statistical analysis of the proposed DQA-RLS
algorithm, the bias compensation strategy along with their computational complexity and power consumption. Section V shows
and discusses the results of simulations, whereas Section VI draws the conclusions of this work. Throughout this paper, we
show the scalars, vectors and matrices with lowercase, boldface lowercase and boldface uppercase letters, respectively, and
adopt the notation in Table I.

TABLE I
NOTATION

(.)T Transposition

(.)∗ Complex Conjugate (Hermitian) transpose

‖.‖ Euclidean norm of a vector∥∥x∥∥2
Z

= x∗Zx Z-Weighted Euclidean norm of a column vector x∥∥y∥∥2
Z

= yZy∗ Z-Weighted Euclidean norm of a row vector y

Tr(.) Trace of a matrix

⊗ Kronecker product of two matrices

vec(Z) Vectorization operation of Z

col{...} Stacks its arguments column-wise

diag(Z) Creates a vector with the diagonal entries of Z

diag{...}
Creates a diagonal matrix with the entries of a
vector or with the diagonal entries of a matrix

II. SIGNAL MODEL AND PROBLEM STATEMENT

In this section, we detail the signal model of the proposed adaptive distributed network with low-resolution ADCs. Furthermore,
we also state the problem and review the signal decomposition of coarsely quantized signals performed by Bussgang’s theorem,
which is central to signal processing with low-resolution ADCs.

A. Adaptive Distributed Network

We consider an IoT network consisting of N nodes or agents which run distributed signal processing techniques to perform
the desired tasks, as depicted in Fig. 1. The presented model considers a desired signal dk(i) at time instant i described by

dk(i) = w∗oxk(i) + vk(i), k = 1, 2, . . . , N, (1)
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Fig. 1. A distributed adaptive IoT network

where wo ∈ RM×1 is the parameter vector that the agents must estimate, xk(i) ∈ RM×1 is the regressor at node k, and vk(i)
represents Gaussian noise with zero mean and variance σ2

v,k at each node k. We also adopt the Adapt-then-Combine (ATC)
diffusion rule because it has been shown a more effective scheme than other previously reported schemes such as incremental
and consensus protocols [10], [11].

As shown in Fig. 1, because the measurement data at each node and the unknown system are analog and each agent processes
the local data {dk(i), xk(i)} digitally, we need two ADCs in each agent. Specifically, a digital signal is acquired from the
observation of an analog signal and the use of an ADC with b bits, which employs a scalar quantizer with the set of thresholds
Tb = {τ1, τ2, . . . , τ2b−1} and the set of labels Lb = {l0, l1, . . . , l2b−1}. We summarize the key features of the proposed adaptive
distributed network of Fig. 1 as follows:
• The proposed adaptive network consists of N nodes which employ distributed signal processing techniques to perform a

desired task.
• Each node has two ADCs to quantize the received signals, i.e., the input regressors and the desired signals, and process

them digitally. Moreover, in the proposed bias compensation section, we show that if each node uses one ADC to quantize
both the input regressors and the desired signals can reduce the complexity of the proposed adaptive network. Note that
for complex data, one ADC must be used for the real part and one ADC for the imaginary part. However, for simplicity,
we carry out an analysis of the proposed DQA-RLS algorithm for real data.

• We assume that the analog signals arriving at the ADCs have been adjusted (e.g., by using automatic gain control (AGC))
to have approximately unit power, and that the fixed thresholds and labels of ADCs are calculated with the Lloyd-Max
algorithm for a Gaussian signal with zero-mean and unit variance. We show in the numerical results that even imperfect
gain control at the analog inputs will not degrade the performance of the proposed algorithms that are based on fixed
thresholds and labels.

• Nodes do not have access to the variance of the quantization distortion. Therefore, we estimate the quantization distortion
variance alongside the designed thresholds and labels to use this estimation later in the proposed algorithms.

One concern is that as the number of agents increases, the energy consumption might grow substantially when using high-
resolution ADCs for each agent. This motivates us to quantize signals using few bits. Therefore, the problem we are interested
in solving in this work is how to design energy-efficient distributed learning algorithms that can cost-effectively operate with
coarsely quantized signals.

B. Signal Decomposition with Coarse Quantization
In order to provide a clear exposition, we provide a short overview of Bussgang’s theorem, which allows one to deal with

nonlinearities like the distortion generated by ADCs.
Theorem 1: Given two Gaussian signals, the cross-correlation function taken after a signal has undergone nonlinear amplitude

distortion is identical (except for a scaling factor) to the cross-correlation function taken before the distortion [34], [35]. Specifically,
according to Bussgang’s theorem, for a pair of zero-mean jointly complex Gaussian random variables x(i) ∼ CN (0, σ2

x(i)) and
x(n) ∼ CN (0, σ2

x(n)), and for the output xQ(i) of some scalar-valued nonlinear function xQ(i) = f
(
x(i)

)
, where f(·) : C → C,

it holds that

ExQ(n),x(i)

[
xQ(n)x∗(i)

]
= g(n)Ex(n),x(i)

[
x(n)x∗(i)

]
(2)
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in which

g(n) =
1

σ2
x(n)

Ex(n)

[
f
(
x(n)

)
x∗(n)

]
. (3)

Let us consider now that the previously mentioned nonlinear function f(·) can be applied element-wise to a zero-mean
complex Gaussian random vector x(i) =

[
x(1), x(2), . . . , x(M)

]
∼ CN (0, Rx) where Rx ∈ CM×M is the covariance matrix

of x, resulting in a vector xQ, i.e.,
xQ = f

(
x
)
. (4)

It follows from (2) that

RxQx = GRx (5)

where

G = diag
{
g1, g2, . . . , gM

}
(6)

represents a diagonal M ×M matrix whose mth diagonal entry is computed as in (3). Bussgang’s theorem can be used to
decompose the output of a nonlinear device as a linear function of the input x plus a distortion q ∈ CM that is uncorrelated
(but not independent) with the input as [34]

xQ = Gx + q (7)

The referred uncorrelation can be viewed as follows

E
[
qx∗

]
= E

[(
xQ −Gx

)
x∗
]

= RxQx −GRx = 0M×M
(8)

where we made use of (5).
To use this result in the distributed adaptive network in Fig. 1, let xk,Q = Qb(xk) denote the b-bit quantized output of an

ADC at node k, described by a set of 2b + 1 thresholds Tb = {τ0, τ1, ..., τ2b}, such that −∞ = τ0 < τ1 < ... < τ2b =∞, and
the set of 2b labels Lb = {l0, l1, ..., l2b−1} where lp ∈ (τp, τp+1], for p ∈ [0, 2b−1] [21]. Let us assume that xk ∼ CN (0, Rxk)
where Rxk ∈ CM×M is the covariance matrix of xk. We have thus a relation between xk,Q and xk in the form of (4), with
the quantization function Qb(·) playing the part of the scalar-valued nonlinear function f(·) in (4). We now use (7) to derive a
model for the quantized vector xk,Q, which we later use to derive our DQA-RLS algorithm. Employing Bussgang’s theorem,
xk,Q can be decomposed as

xk,Q = Gk,bxk + qx,k, (9)

where the distortion qx,k is uncorrelated with xk, and Gk,b ∈ RM×M is a diagonal matrix given by [21]

Gk,b = diag
{
Rxk

}− 1
2

2b−1∑
j=0

lj√
π

[
exp

(
− τ2

j diag
{
Rxk

}−1)
− exp

(
− τ2

j+1 diag
{
Rxk

}−1)]
,

(10)

where the index b indicates the number of bits (ADC resolution). Since Gk,b is a real-valued diagonal matrix, GH
k,b = Gk,b.

Note that, as a simplifying approximation, we also apply this signal decomposition to the desired signal, dk,Q, which is the
output of the second ADC in the system, and for the particular case that Rxk = E[xkx

∗
k] = σ2

x,kIM , the matrix Gk,b becomes
gk,bIM and gk,b ∈ R is given by

gk,b =
1√
σ2
xk

2b−1∑
j=0

lj√
π

(
e
−

τ2j

σ2xk − e
−
τ2j+1

σ2xk

)
. (11)

To compute Gk,b, three parameters are needed, namely the set of thresholds Tb, the set of labels Lb and the covariance matrix
of the input signal Rxk . The thresholds and labels are designed for the ADCs and are available at the nodes. However, the
nodes have access to Rxk,Q instead of Rxk . To overcome this, we can estimate the variance of the distortion, i.e., σ̂2

q,k (as
this variance is not accessible in practice) and the covariance matrix of the input signal, R̂xk = Rxk,Q + σ̂2

q,kIM . In the next
section, we show how to design the ADCs and estimate the variance of the distortion.
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C. Design of ADCs

In this section, we show how to compute the thresholds and labels to design the ADCs. To minimize the mean square
error (MSE) between xk and xk,Q, we need to characterize the probability density function (PDF) of xk to find the optimal
quantization labels. Because choosing these labels based on such PDF is ineffective in practice (since the PDFs are difficult to
estimate), we assume the regressor xk(i) is Gaussian, then adapt the approach in [21] and compute the thresholds and labels as
follows:

1) We generate an auxiliary Gaussian random variable xaux with unit variance and then use the Lloyd-Max algorithm [36],
[37] to find a set of thresholds T̃b = {τ1, . . . , τ2b−1} and labels Lb = {l0, . . . , l2b−1} that minimize the MSE between
the unquantized and the quantized signals.

2) We wrap up the set of thresholds Tb by adding τ0 = −∞ and τ2b =∞ to T̃b.
3) We quantize xaux using T̃b and Lb, generate the quantized signal xaux,Q, and estimate the variance of the distortion, σ2

q,k

with the subtraction of the variance of the quantized auxiliary signal from the variance of the auxiliary signal as follows

σ̂2
q,k = σ2

xaux
− σ2

xaux,Q
. (12)

4) We estimate the covariance matrix of the distortion as follows

R̂qx,k = σ̂2
q,kIM . (13)

Note that step 1 designs the ADC thresholds and labels, step 2 completes the thresholds needed for (10), and steps 3 and 4 are
useful to estimate Rxk .

III. PROPOSED DQA-RLS ALGORITHM

In this section, we present the derivation of the proposed DQA-RLS algorithm. We consider xk(t) and dk(t) as the (band-
limited before sampling) analog input and output of the unknown system wo at node k. Let xk(i) and dk(i) denote the digital
versions of xk(t) and dk(t), and xk,Q(i) and dk,Q(i) denote the coarsely quantized versions of xk(i) and dk(i), respectively.
We assume that the input signal at each node is Gaussian with zero mean and covariance matrix Rxk for k = 1, 2, ..., N . We
can now decompose xk,Q(i) and dk,Q(i) as

xk,Q(i) = Gk,bxk(i) + qx,k(i), (14)

and

dk,Q(i) = Q(dk(i)) = gk,bdk(i) + qd,k(i)

= gk,bw
∗
oxk(i) + q̄k(i),

(15)

where q̄k(i) = gk,bvk(i) + qd,k(i) is uncorrelated with xk(i). Note that Gk,b and gk,b are built based on xk(i) and dk(i),
respectively.

We show next that a learning algorithm based directly on (15) is biased for estimating wo and show how to correct for this bias.
To this end, let βk,b(i) be an M ×M bias-compensation matrix to be computed and define d̂k(i) = w∗k(i− 1)βk,b(i)xk,Q(i).
Thus, the error is given by

ēk(i) = dk,Q(i)− d̂k(i)

= dk,Q(i)−w∗k(i− 1)βk,b(i)xk,Q(i).
(16)

As seen in (16), ēk(i) is different from ek(i) = dk(i)−w∗k(i− 1)xk(i) in the diffusion RLS (DRLS) [12].
Let us consider a network of N nodes distributed over an area as in Fig. 1. At time i, we globally collect the quantized

input regressors into a matrix Xi,Q, the quantized desired signal into vector di,Q, the noise samples into vector vi, and the
bias-compensation coefficients into the matrix βi,b over all nodes as follows:

Xi,Q = bdiag{x1,Q(i), . . . ,xN,Q(i)} (MN ×N)

di,Q = col{d1,Q(i), . . . , dN,Q(i)} (N × 1)

vi = col{v1(i), . . . , vN (i)} (N × 1)

βi,b = [β1,b(i), . . . ,βN,b(i)] (M ×MN).

(17)

We can write down the covariance matrix of the noise vector as follows

Rv = E[viv
∗
i ] = diag{σ2

v1 , . . . , σ
2
vN } (N ×N). (18)
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Now we collect these data from time 0 to time i as follows

Xi,Q = bdiag{Xi,Q, . . . ,X0,Q} (MN(i+ 1)×N(i+ 1)),

di,Q = col{di,Q, . . . ,d0,Q}T (1×N(i+ 1)),

vi = col{vi, . . . ,v0}T (1×N(i+ 1)),

Bi,b = [βi,b, . . . ,β0,b] (M ×MN(i+ 1)),

(19)

where Rv,i = E[v∗i vi]. Note that for the globally collected quantities we denote time by a subscript, whereas for node-wise
quantities we denote time by parenthesis. Then, we estimate the M × 1 vector wo by solving the weighted regularized
least-squares problem given by

min
w

[∥∥w −w
∥∥2

Πi
+
∥∥di,Q −w∗Bi,bXi,Q

∥∥2

Σi

]
, (20)

where w is a given column vector, usually w = 0, Πi > 0 is an M×M positive-definite matrix that incorporates a regularization
term ‖w−w‖2Πi

into the least-squares problem, and Σi > 0 is an N(i+ 1)×N(i+ 1) Hermitian positive-definite matrix that
incorporates weighting into the least-squares problem. The regularization and weighting matrices are given as follows

Πi = λi+1Π and Σi = Λi, (21)

where 0� λ < 1, Π = δ−1IM with δ > 0 as a positive constant, and Λi , bdiag{IN , λIN , . . . , λ
iIN}. Note that Σi = R−1

v,iΛi

and since the noise variances are often unknown, we choose the weighting matrix as in (21).
We can rewrite (20) in the equivalent form

min
w

[
(w −w)∗Πi(w −w) + (di,Q −w∗Bi,bXi,Q)

Σi(di,Q −w∗Bi,bXi,Q)∗
] (22)

To solve (22), we reduce it to the standard least-squares form by introducing the eigendecompositions of Πi as follows

Πi = Ψi∆iΨ
∗
i , (23)

where ∆i is diagonal with positive entries, and unitary, i.e., it satisfies ΨiΨ
∗
i = Ψ∗iΨi = IM . Let Λ

1/2
i denote the diagonal

matrix whose entries are equal to the positive square roots of the entries of Λi, and define the change of variables

a , di,QΛ
1/2
i , and L , Bi,bXi,QΛ

1/2
i . (24)

Using (24), we can rewrite (22) as follows

min
w

[
(w −w)∗Πi(w −w) + ‖a−w∗L‖2

]
. (25)

Defining the change of variables

z , w −w and f , a−w∗L, (26)

we can rewrite (25) as follows
min

z

[
z∗Πiz + ‖f − z∗L‖2

]
. (27)

Let ∆
1/2
i denote the diagonal matrix whose entries are equal to the positive square roots of the entries of ∆i. Then using the

eigendecomposition in (23), we can write the equivalent form of (27) as follows

min
z

[∥∥∥∥ [0 f
]
− z∗

[
Ψ∗i∆

1/2
i L

] ∥∥∥∥2
]
, (28)

which is a form of the standard least-squares

min
w

[∥∥y −w∗H
∥∥2
]
, (29)

in which the roles of y and H are played by
[
0 f

]
and

[
Ψ∗i∆

1/2
i L

]
, respectively. All solutions ŵ to the least-squares

problem (29) are characterized as solutions to the linear system of equations

ŵ∗HH∗ = yH∗. (30)

We replace y and H with
[
0 f

]
and

[
Ψ∗i∆

1/2
i L

]
in (30) to form the solutions ẑ to (27) as follows( [

0 f
]
− ẑ∗

[
Ψ∗i∆

1/2
i L

] ) [
Ψ∗i∆

1/2
i L

]∗
= 0. (31)
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Using ẑ = ŵ −w and (26) in (31), we can write the solution ŵ to (27) in a system of equations as follows

(ŵ −w)∗[Πi + LL∗] = (a−w∗L)L∗, (32)

or in an equivalent form the solution w(i) is given by

w(i) = w + [Πi + LL∗]−1L(a−w∗L)∗. (33)

Using (24), the solution w(i) to the weighted regularized least-squares (20) is given by

w(i) = w+(Πi +Bi,bXi,QΣiX
∗
i,QB

∗
i,b)
−1

Bi,bXi,QΣi(di,Q −w∗Bi,bXi,Q)∗.
(34)

To simplify, we use (21), assume the given column vector w = 0, and write an exponentially weighted version of (34) as
follows

w(i) = (λi+1Π +Bi,bXi,QΛiXi,Q ∗B∗i,b)−1

Bi,bXi,QΛid
∗
i,Q.

(35)

To form the recursions, we introduce P i as follows

P i = (λi+1Π +Bi,bXi,QΛiX
∗
i,QB

∗
i,b)
−1, (36)

and write down (35) as follows
w(i) = P iBi,bXi,QΛid

∗
i,Q. (37)

We then reformulate the global least-squares solution in (37) as a local least-squares solution where nodes have access to
limited data from their neighbors in the diffusion scheme [12]. In this scheme, nodes update their local intermediate estimates
hk(i) following (37) which yields

hk(i) = Pk(i)Bk,b(i)Xk,Q(i)Λk(i)d∗k,Q(i), (38)

where
Pk(i) = (λi+1Π +Bk,b(i)Xk,Q(i)Λk(i)X∗k,Q(i)B∗k,b(i))

−1,

and Xk,Q(i), dk,Q(i), and Bk,b(i) are the collected quantities from time 0 to time i at node k.
At the combination step, the nodes communicate their local intermediate estimates with their neighbors and provide a

combined estimate wk(i) as follows
wk(i) =

∑
l∈Nk

al,khl(i), (39)

where Nk is the neighborhood of node k (possibly including itself) and the combination coefficients, al,k, of neighbor nodes
on node k are chosen such that

al,k = 0 if l /∈ Nk, al,k > 0 if l ∈ Nk, and
∑
l∈Nk

al,k = 1. (40)

To form the recursion, we compute Pk(i) from Pk(i− 1) as follows

P−1
k (i) = λ[λiΠ +Bk,b(i− 1)Xk,Q(i− 1)Λk(i− 1)

X∗k,Q(i− 1)B∗k,b(i− 1)] + βk,b(i)xk,Q(i)x∗k,Q(i)β∗k,b(i)

= λP−1
k (i− 1) + βk,b(i)xk,Q(i)x∗k,Q(i)β∗k,b(i).

(41)

Using the matrix inversion lemma

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1,

and the assignments

A← λP−1
k (i), B ← βk,b(i)xk,Q(i),

C ← 1, D ← x∗k,Q(i)β∗k,b(i),

we obtain the recursion for updating Pk(i) given by

Pk(i) = λ−1

(
Pk(i− 1)−

λ−1Pk(i− 1)βk,b(i)xk,Q(i)x∗k,Q(i)β∗k,b(i)Pk(i− 1)

1 + λ−1x∗k,Q(i)β∗k,b(i)Pk(i− 1)βk,b(i)xk,Q(i)

)
.

(42)
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To form the recursion for hk(i), we rewrite (38) as follows

hk(i) = Pk(i)

[
Bk,b(i− 1)Xk,Q(i− 1)λΛk(i− 1)

d∗k,Q(i− 1) + βk,b(i)xk,Q(i)dk,Q(i)

]
= Pk(i)

[
P−1
k (i− 1)Pk(i− 1)Bk,b(i− 1)Xk,Q(i− 1)

λΛk(i− 1)d∗k,Q(i− 1) + βk,b(i)xk,Q(i)d∗k,Q(i)

]
(43)

From (41), we have P−1
k (i − 1) = λ−1

(
P−1
k (i) − βk,b(i)xk,Q(i)x∗k,Q(i)β∗k,b(i)

)
. Then considering hk(i − 1) = Pk(i −

1)Bk,b(i− 1)Xk,Q(i− 1)Λk(i− 1)d∗k,Q(i− 1) from (38) and the fact that Pk is a symmetric matrix, we can write (43) as
follows

hk(i) = Pk(i)P−1
k (i− 1)λhk(i− 1)

+ Pk(i)βk,b(i)xk,Q(i)d∗k,Q(i)

= hk(i− 1)−Pk(i)βk,b(i)xk,Q(i)x∗k,Q(i)β∗k,b(i)hk(i− 1)

+ Pk(i)βk,b(i)xk,Q(i)d∗k,Q(i)

= hk(i− 1) + Pk(i)βk,b(i)xk,Q(i)(
d∗k,Q(i)− x∗k,Q(i)β∗k,b(i)hk(i− 1)

)
.

(44)

Note that with diffusion, at time instant i, each node uses its combined estimate wk(i− 1) instead of intermediate estimate
hk(i− 1) to update hk(i). This allows the combined estimates diffuse into the network. We then update hk(i) as follows

hk(i) = wk(i− 1) + Pk(i)βk,b(i)xk,Q(i)ē∗k(i), (45)

where
ēk(i) = dk,Q(i)−w∗k(i− 1)βk,b(i)xk,Q(i) (46)

The next section shows how the bias compensation βk,b(i) should be chosen such that (39) is asymptotically unbiased in the
mean.

IV. ANALYSIS AND BIAS COMPENSATION

In this section, we present a statistical analysis of the proposed DQA-RLS algorithm that focuses on the mean and mean-square
performances. In addition, we devise a bias compensation strategy and investigate the computational complexity and the power
consumption of the proposed and existing algorithms.

A. Assumptions and Definitions

Combining (21) with (41), we can write P−1
k (i) as follows:

P−1
k (i) = λP−1

k (i− 1) + βk,b(i)xk,Q(i)x∗k,Q(i)β∗k,b(i)

= λi+1Π +

i∑
j=0

λi−jβk,b(j)xk,Q(j)x∗k,Q(j)β∗k,b(j).
(47)

We aim to evaluate the mean behavior of the matrix Pk(i). Choosing 0� λ < 1, as i→∞, the steady-state mean value of
P−1
k (i) is given by

lim
i→+∞

E[P−1
k (i)] =

1

1− λ
E[βk,b(j)xk,Q(j)x∗k,Q(j)β∗k,b(j)].

(48)

In order to simplify the analysis, we use the definition

uk(j) , βk,b(j)xk,Q(j), (49)

that leads to the following expression for (48):

lim
i→+∞

E[P−1
k (i)] =

Ruk

1− λ
, P−1

k . (50)
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TABLE II
PSEUDO CODE FOR THE DQA-RLS ALGORITHM

Initialization:

Generate Tb and Lb
Compute σ̂2

q,k from (12)

σ̂2
xk,Q

(−1) = 0, wk(−1) = 0 and Pk(−1) = Π−1

0� γ < 1 and 0� λ < 1

At each time instant i and node k

Receive data

dk,Q(i)

xk,Q(i) = [xk,Q(i), xk,Q(i− 1), . . . , xk,Q(i−M + 1)]T

Repeat

σ̂2
xk,Q

(i) = γσ̂2
xk,Q

(i− 1) + (1− γ)|xk,Q(i)|2

σ̂2
xk (i) = σ̂2

xk,Q
(i) + σ̂2

q,k

ĝxk,b(i) = 1√
σ̂2
xk

(i)

2b−1∑
j=0

lj√
π

(
e
−

τ2j

σ̂2xk
(i) − e

−
τ2j+1

σ̂2xk
(i)

)
βk,b(i) =

ĝ2xk,b
(i)σ̂2

xk
(i)

ĝ2
xk,b

(i)σ̂2
xk

(i)+σ2
q,k

ēk(i) = dk,Q(i)−w∗k(i− 1)βk,b(i)xk,Q(i)

Pk(i) =
1

λ

(
Pk(i− 1)−

Pk(i− 1)βk,b(i)xk,Q(i)x∗k,Q(i)βk,b(i)Pk(i− 1)

λ+ x∗k,Q(i)βk,b(i)Pk(i− 1)βk,b(i)xk,Q(i)

)
hk(i) = wk(i− 1) + Pk(i)βk,b(i)xk,Q(i)ē∗k(i)

wk(i) =
∑
l∈Nk

al,khl(i)

where Ruk = E[βk,b(j)xk,Q(j)x∗k,Q(j)β∗k,b(j)].
To start the analysis, we need to introduce some assumptions similar to those often used in the analysis of adaptive algorithms

in the literature. Simulation results show that the results obtained under the following assumptions correspond well with real
performance of the DQA-RLS algorithm, for stationary data and for a forgetting factor close to unity.

Assumption 1: The input regressors xk(i) are zero-mean with covariance matrices Rxk = E[xk(i)x∗k(i)] and temporally
independent. This assumption also applies to the additive noise sequences vk(i) with variance σ2

v,k and the quantized regressors
xk,Q(i) with covariance matrices Rxk,Q = E[xk,Q(i)x∗k,Q(i)]. Moreover, covariance matrices are time-invariant and all data is
assumed spatially independent.

Assumption 2: The matrix Pk(i) varies slowly in relation to w̃k(i) and wk(i). Thus, when they appear inside the expectations
we decouple their expected values [38], [39]. Note that this a common assumption for the performance analysis of RLS-type
algorithms for λ close to unity. This also applies to Gk,b since (10) is based on the statistics of xk(i).

Assumption 3: There is an iteration number i0 such that for all i > i0, the time-averaged matrices Pk(i) and P−1
k (i) can be

replaced by their expected values, E[Pk(i)] and E[P−1
k (i)]. Note that such replacements are commonly used in the performance

analysis of RLS-type algorithms, see [12], [18], [25], [31], i.e.,

E[Pk(i)] ≈ Pk and E[P−1
k (i)] ≈ P−1

k . (51)

To analyze the mean and mean-square performance of DQA-RLS, we use the weight-error vectors

w̃k(i) = wo −wk(i), and h̃k(i) = wo − hk(i). (52)

The performance of bias-compensated-type adaptive filters is usually compared in terms of the mean-square deviation (MSD)
[19], defined by

MSDk , lim
i→+∞

E[‖w̃k(i)‖2] = E
[

Tr
(
w̃k(i)w̃∗k(i)

)]
. (53)
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We define the N ×N matrix A = [al,k], and the following matrices:

A = A⊗ IM (MN ×MN)

W̃i = col
{
w̃1(i), . . . , w̃N (i)

}
(MN × 1).

(54)

B. Mean Performance Analysis

Using the decomposition model in (14), we can rewrite the error in (16) as follows

ēk(i) = dk,Q(i)−w∗k(i− 1)βk,b(i)xk,Q(i)

= gk,bw
∗
oxk(i) + q̄k(i)−w∗k(i− 1)βk,b(i)(

Gk,bxk(i) + qx,k(i)
)

= gk,bw
∗
oxk(i)−w∗k(i− 1)βk,b(i)Gk,bxk(i)

−w∗k(i− 1)βk,b(i)qx,k(i) + q̄k(i).

(55)

Combining (55) with (45) and subtracting from wo yields

h̃k(i) = w̃k(i− 1)−Pk(i)βk,b(i)
(
Gk,bxk(i) + qx,k(i)

)
(
x∗k(i)gk,bwo − x∗k(i)Gk,bβ

∗
k,b(i)wk(i− 1)

− q∗x,k(i)β∗k,b(i)wk(i− 1) + q̄∗k(i)
)

= w̃k(i− 1) + Pk(i)βk,b(i)Gk,bxk(i)

x∗k(i)Gk,bβ
∗
k,b(i)wk(i− 1)

+ Pk(i)βk,b(i)qx,k(i)q∗x,k(i)β∗k,b(i)wk(i− 1)

−Pk(i)βk,b(i)Gk,bxk(i)x∗k(i)gk,bwo

+ Pk(i)βk,b(i)Gk,bxk(i)q∗x,k(i)β∗k,b(i)wk(i− 1)

−Pk(i)βk,b(i)Gk,bxk(i)q̄∗k(i)

+ Pk(i)βk,b(i)qx,k(i)x∗k(i)Gk,bβ
∗
k,b(i)wk(i− 1)

−Pk(i)βk,b(i)qx,k(i)x∗k(i)gk,bwo

−Pk(i)βk,b(i)qx,k(i)q̄∗k(i).

(56)

The errors q̄k, qx,k, and the regressors xk are assumed statistically independent, so that the expectation of the cross terms
vanishes. Taking the expectation from the remaining terms in (56), we obtain

E
[
h̃k(i)

]
= E

[
w̃k(i− 1)

]
+ E

[
Pk(i)βk,b(i)

(
Gk,bxk(i)

x∗k(i)Gk,b + qx,k(i)q∗x,k(i)
)
β∗k,b(i)

]
E
[
wk(i− 1)

]
− E

[
Pk(i)βk,b(i)Gk,bxk(i)x∗k(i)gk,b

]
wo.

(57)

Let us define two M ×M matrices that include terms multiplied by wk(i− 1) and wo in (57) as follows:

Θk(i) , Pk(i)βk,b(i)
(
Gk,bxk(i)x∗k(i)Gk,b

+ qx,k(i)q∗x,k(i)
)
β∗k,b(i)

Γk(i) , Pk(i)βk,b(i)Gk,bxk(i)x∗k(i)gk,b.

(58)

We show next that a necessary but not sufficient condition to have an asymptotically unbiased solution in the mean is that

E
[
Θk(i)

]
= E

[
Γk(i)

]
, (59)

and we show in the next section that this condition is possible by appropriately choosing βk,b(i). Assuming (59), we can write
(57) as follows

E
[
h̃k(i)

]
= E

[
w̃k(i− 1)

]
− E

[
Θk(i)

]
E
[
w̃k(i− 1)

]
. (60)

From (47) and (50), we can verify that for sufficiently large i under Assumption 3, we have

E
[
Θk(i)

]
= 1− λ. (61)
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We now apply the weight-error vectors to the combined estimates (39) and obtain

w̃k(i) =
∑
l∈Nk

al,kh̃l(i), (62)

and taking the expectation from both sides of it and using (60) and (61), we arrive at

E
[
w̃k(i)

]
=
∑
l∈Nk

al,k(1− λ)E
[
w̃k(i− 1)

]
. (63)

For the global estimates and i > i0, we have

E[W̃i] = (1− λ)AE[W̃i−1] = (1− λ)i−i0Ai−i0E[W̃i0 ]. (64)

Observing (64) and recalling that the spectral radius of A (i.e., the largest eigenvalue in modulus) is equal to one [40], we can
state that for sufficiently large i0 (or equivalently in adaptive filtering, when the algorithm reaches the steady-state), assuming
W̃i0 is element-wise bounded by some finite constant and regarding (40), for 0� λ < 1, the term on the right-hand side of
(64) converges to zero and DQA-RLS is asymptotically unbiased in the mean.

C. Proposed Bias Compensation

In this section, we derive an expression for the bias compensation term βk,b(i) such that (59) is true and (39) is asymptotically
unbiased in the mean. From (58) and (59), we must have

E
[
Pk(i)βk,b(i)

(
Gk,bxk(i)x∗k(i)Gk,b

+ qx,k(i)q∗x,k(i)
)
β∗k,b(i)

]
= E

[
Pk(i)βk,b(i)Gk,bxk(i)x∗k(i)gk,b

]
.

(65)

Under Assumptions 2 and 3, we can write (65) as follows(
Gk,bE

[
xk(i)x∗k(i)

]
Gk,b

+ E
[
qx,k(i)q∗x,k(i)

])
β∗k,b(i)

= Gk,bE
[
xk(i)x∗k(i)

]
gk,b.

(66)

Therefore, the bias compensation term is expressed by

βk,b(i) = βk,b = gk,bRxkGk,b

(
Gk,bRxkGk,b + Rqx,k

)−1

, (67)

which needs an M×M matrix inversion at each time instant i if xk(i) are nonstationary and, moreover, we realize βk,b ∈ RM×M
is time-invariant for stationary inputs. In what follows, we show how to compute the bias compensation term to reduce the
complexity of our proposed algorithm.

Remark 1: (Stationary data). When the input regressors xk(i) are wide-sense stationary, we use Rxk = E[xk(i)x∗k(i)] ≈
σ2
x,kIM and the matrix Gk,b reduces to gxk,bIM with gxk,b estimated as follows

ĝxk,b(i) =
1√
σ̂2
xk

(i)

2b−1∑
j=0

lj√
π

(
e
−

τ2j

σ̂2xk
(i) − e

−
τ2j+1

σ̂2xk
(i)

)
, (68)

where σ̂2
xk

(i) is an instantaneous approximation to σ2
x,k given by the following recursions:

σ̂2
xk,Q

(i) = γσ̂2
xk,Q

(i− 1) + (1− γ)|xk,Q(i)|2,
σ̂2
xk

(i) = σ̂2
xk,Q

(i) + σ̂2
q,k,

(69)

where σ̂2
xk,Q

(−1) = 0 and 0� γ < 1 and σ̂2
q,k is given by (12). Therefore, the bias compensation term is given by

βk,b(i) = βk,b(i)IM =
ĝxk,b(i)ĝk,b(i)σ̂

2
xk

(i)

ĝ2
xk,b

(i)σ̂2
xk

(i) + σ̂2
q,k

IM . (70)

Remark 2: (One ADC for each node). To reduce the complexity of our algorithm, we design only one ADC to quantize both
the input regressors and desired signals. This also covers the network with nodes in which the two ADCs use the same set of
thresholds and the same set of labels. Then gxk,b and gk,b can be considered equal and the bias compensation term is given by

βk,b(i) =
ĝ2
xk,b

(i)σ̂2
xk

(i)

ĝ2
xk,b

(i)σ̂2
xk

(i) + σ̂2
q,k

IM . (71)
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This is the simple version of the bias compensation term that we use in the proposed DQA-RLS algorithm which is detailed
in table II, and as we show in the simulation results, its MSD performance is better than that of the DRLS algorithm with
coarsely quantized signals even for colored inputs and imperfect gain control (σ2

xk
6= 1).

D. Mean-Square Performance Analysis

In this section, we carry out a mean-square performance analysis and discuss the steady-state behavior of the DQA-RLS
algorithm. We first write (56) as

h̃k(i) = Pk(i)P−1
k (i)w̃k(i− 1)

−Pk(i)βk,bxk,Q(i)d∗k,Q(i)

+ Pk(i)βk,bxk,Q(i)x∗k,Q(i)βTk,bwk(i− 1).

(72)

Using (47), we obtain

h̃k(i) = Pk(i)λP−1
k (i− 1)w̃k(i− 1)

−Pk(i)βk,bxk,Q(i)d∗k,Q(i)

+ Pk(i)βk,bxk,Q(i)x∗k,Q(i)βTk,b(
w̃k(i− 1) + wk(i− 1)

)
= λw̃k(i− 1)−Pk(i)βk,bxk,Q(i)d∗k,Q(i)

+ Pk(i)βk,bxk,Q(i)x∗k,Q(i)βTk,bwo.

(73)

We now use (14) and (15) to write (73) as follows

h̃k(i) = λw̃k(i− 1)

−Pk(i)βk,bGk,bxk(i)x∗k(i)gk,bwo

−Pk(i)βk,bGk,bxk(i)q̄∗k(i)

−Pk(i)βk,bqx,k(i)x∗k(i)gk,bwo

−Pk(i)βk,bqx,k(i)q̄∗k(i)

+ Pk(i)βk,bxk,Q(i)x∗k,Q(i)βTk,bwo.

(74)

In order to simplify this expression, we assume that the choice of βk,b in (67) is such that the instantaneous values in the
second and sixth terms on the RHS of (74) are equal with different signs and vanish for sufficiently large i. Therefore, the
weight-error vectors of the combined estimates in (62) are given by

w̃k(i) = λ
∑
l∈Nk

al,kw̃l(i− 1)

−
∑
l∈Nk

al,kPlβl,bGl,bxl(i)q̄
∗
l (i)

−
∑
l∈Nk

al,kPlβl,bqx,l(i)x
∗
l (i)gl,bwo

−
∑
l∈Nk

al,kPlβl,bqx,l(i)q̄
∗
l (i).

(75)

Let us now define
P = bdiag

{
P1, . . . ,PN

}
(MN ×MN)

Bb = bdiag
{
β1,b, . . . ,βN,b

}
(MN ×MN)

Gb = bdiag
{
G1,b, . . . ,GN,b

}
(MN ×MN)

Υi = bdiag
{
qx,1(i)x∗1(i), . . . ,

qx,N (i)x∗N (i)
}

(MN ×MN)

ξi = col
{
x1(i)q̄∗1(i), . . . ,xN (i)q̄∗N (i)

}
(MN × 1)

ζi = col
{
qx,1(i)q̄∗1(i), . . . ,qx,N (i)q̄∗N (i)

}
(MN × 1)

η = col
{
g1,bwo, . . . , gN,bwo

}
(MN × 1),

and write W̃i in a more compact form as

W̃i = λAW̃i−1 −APBbGbξi −APBbΥiη −APBbζi.
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Taking the expectation of W̃iW̃
∗
i , we obtain

E
[
W̃iW̃

∗
i

]
= λ2E

[
AW̃i−1W̃

∗
i−1AT

]
+ E

[
APBbGbξiξ

∗
iGTb BTb P∗AT

]
,

+ E
[
APBbΥiηη

∗Υ∗iBTb P∗AT
]
,

+ E
[
APBbζiζ

∗
iBTb P∗AT

]
+ E

[
APBbGbξiη∗Υ∗iBTb P∗AT

]
,

+ E
[
APBbΥiηξ

∗
iGTb BTb P∗AT

]
,

+ E
[
APBbGbξiζ

∗
iBTb P∗AT

]
,

+ E
[
APBbζiξ

∗
iGTb BTb P∗AT

]
+ E

[
APBbΥiηζ

∗
iBTb P∗AT

]
,

+ E
[
APBbζiη∗Υ∗iBTb P∗AT

]
.

(76)

We now use the commutative property of the expectation and vectorization operations, and the relationship between the
vectorization operation and the Kronecker product, vec(ABC) = (CT ⊗A) vec(B), to write (76) as follows

vec(Ωi) = λ2(A⊗A) vec(Ωi−1) + vec(Ξi), (77)

where Ωi = E
[
W̃iW̃

∗
i

]
and Ξi denotes the summation of the second term to the last one on the RHS of (76). Note that

vec(Ωi) is stable if and only if the spectral radius of λ2(A⊗A) is strictly smaller than 1 or |λ| < 1. Therefore, we obtain

lim
i→+∞

vec(Ωi) =
(
IM2N2 − λ2(A⊗A)

)−1
vec(Ξ+∞). (78)

For sufficiently large i, taking into account Assumption 3 and (50), we have

Pk = (1− λ)
[
βk,bRxk,Qβk,b

]−1
,

thus vec(Ξ+∞) is given by

vec(Ξ+∞) = lim
i→+∞

vec(Ξi) = (1− λ)2(A⊗A)

vec

(
B−1
b R−1

xQ

(
GbE

[
ξiξ
∗
i

]
GTb + E

[
Υiηη

∗Υ∗i
]

+ E
[
ζiζ
∗
i

]
+ GbE

[
ξiη
∗Υ∗i

]
+ E

[
Υiηξ

∗
i

]
GTb

+ GbE
[
ξiζ
∗
i

]
+ E

[
ζiξ
∗
i

]
GTb + E

[
Υiηζ

∗
i

]
+ E

[
ζiη
∗Υ∗i

])
R−1
xQB

−1
b

)
≈ (1− λ)2(A⊗A)

vec

(
B−1
b R−1

xQ

(
GbE

[
ξiξ
∗
i

]
GTb

+ E
[
Υiηη

∗Υ∗i
]

+ E
[
ζiζ
∗
i

])
R−1
xQB

−1
b

)
,

(79)

where under Assumptions 2 and 3, the expectations of the cross-terms vanish and

RxQ = bdiag
{
Rx1,Q, . . . ,RxN ,Q

}
E
[
ξiξ
∗
i

]
= bdiag

{
Rx1σ

2
q̄1 , . . . ,RxNσ

2
q̄N

}
E
[
Υiηη

∗Υ∗i
]

= bdiag
{
g2

1,bRqx,1

(
w∗oRx1

wo

)
, . . . ,

g2
N,bRqx,N

(
w∗oRxNwo

)}
E
[
ζiζ
∗
i

]
= bdiag

{
Rqx,1σ

2
q̄1 , . . . ,Rqx,Nσ

2
q̄N

}
.

(80)

The analytical computation of Rxk,Q, Rqx,k, and σ2
q̄k

is detailed in the Appendix.
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Therefore, the steady-state MSD at node k is given by

MSDk = lim
i→+∞

E[‖w̃k(i)‖2] = vecT
(
Ck ⊗ IM

)
vec(Ω+∞)

= (1− λ)2 vecT
(
Ck ⊗ IM

)(
IM2N2 − λ2(A⊗A)

)−1

(A⊗A) vec

(
B−1
b R−1

xQ

(
GbE

[
ξiξ
∗
i

]
GTb

+ E
[
Υiηη

∗Υ∗i
]

+ E
[
ζiζ
∗
i

])
R−1
xQB

−1
b

)
,

(81)

where Ck is an N×N matrix with zero entries and a unity on its kth diagonal entry that selects the part of W̃iW̃
∗
i corresponding

to the kth node. It can be seen from (77) that, for 0� λ < 1 and A with the entries al,k subject to (40), the eigenvalues of
λ2A⊗A remain in the interval (−1, 1), and thus DQA-RLS is stable in the mean-square sense and

(
IM2N2 − λ2(A⊗A)

)
in (81) is nonsingular. The global MSD over all the nodes is given by

MSDglobal =
1

N

N∑
k=1

MSDk =
1

N
Tr(Ω+∞). (82)

Remark 3: (High precision signals, b =∞). Increasing the number of quantization bits, the diagonal entries of Gk,b approach
unity where for high precision signals (b = ∞) with xk,Q = xk, we have Gk,b = IM according to (10) and Rqx,k = 0
according to (14), and consequently βk,b(i) = IM from (71). For b = ∞ we also have qd,k = 0 and gk,b = 1, and since
q̄k(i) = gk,bvk(i) + qd,k(i), thus σ2

q̄k
= σ2

v,k. Therefore, for high precision signals, the third and fourth definitions in (80)
vanish, and (81) reduces to

MSDk = (1− λ)2 vecT
(
Ck ⊗ IM

)(
IM2N2 − λ2(A⊗A)

)−1
(A⊗A)

vec
(

bdiag
{
R−1
x1
σ2
v,1, . . . ,R

−1
xNσ

2
v,N

})
,

(83)

which is equal to the theoretical MSD of the standard DRLS. So, as we expected, the MSD performance of DQA-RLS becomes
closer to that of the standard DRLS with the increase of the resolution of ADCs.

E. Complexity and Power Consumption

Table III shows the computational complexity of the DQA-RLS algorithm in terms of the number of multiplications and
additions at node k per time instant, where nk is the number of neighbor nodes connected to node k. At each time instant,
DQA-RLS performs a few more operations (O(M+2b)) than DRLS, which does not change much the computational complexity
that is in the order of O(M2). Fig. 2a shows a comparison of the computational complexity of the DQA-RLS and DRLS
algorithms for different filter lengths in terms of the number of multiplications/divisions and additions/subtractions assuming
nk = 3 in average for each node k. As we can see, by increasing the filter length the number of operations will increase
while the computational complexity of DQA-RLS still remains close to that of DRLS. For instance, for M = 32 in Fig. 2a,
DQA-RLS with low-resolution quantized signals adds 1% extra multiplications/divisions to DRLS with full resolution signals
while the number of additions/subtractions operated by DQA-RLS remains very close to that of DRLS. Note that we compute
gk,b online since this is more appropriate for non-stationary input data. However, one can compute Gk,b offline if an estimate
of Rxk in (10) is available.

However, the extra complexity in DQA-RLS allows the system to work in an energy-efficient way and enables the algorithm
to be robust against variations and imprecise knowledge of Rxk . In order to assess the power savings by low-resolution
quantization, let us consider a network with N nodes in which each node uses two ADCs. The power consumption of each
ADC is PADC(b) = cB2b [41], where B is the bandwidth (related to the sampling rate), b is the number of quantization bits
of the ADC, and c is the power consumption per conversion step. Therefore, the total power consumption of the ADCs in the
network is

PADC,T (b) = 2NcB2b (watts). (84)

Fig. 2b shows an example of the total power consumption of ADCs in a narrowband IoT (NB-IoT) network running diffusion
adaptation consisting of 20 nodes with bandwidth B = 200 kHz [42] and considering the power consumption per conversion
step of each ADC, c = 494 fJ, as in [43].
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TABLE III
COMPUTATIONAL COMPLEXITY PER TIME INSTANT

Task +− × ÷ exp

σ̂2
xk,Q

(i) = γσ̂2
xk,Q

(i− 1) + (1− γ)|xk,Q(i)|2 2 4 0 0

σ̂2
xk

(i) = σ̂2
xk,Q

(i) + σ̂2
q,k 1 0 0 0

gxk,b(i) = 1√
σ̂2
xk

(i)

2b−1∑
j=0

lj√
π

(
e
−

τ2j

σ̂2xk
(i) − e

−
τ2j+1

σ̂2xk
(i)

)
2b − 1 2b+1 + 1 2b + 1 2b

βk,b(i) =
g2xk,b

(i)σ̂2
xk

(i)

g2
xk,b

(i)σ̂2
xk

(i)+σ2
q,k

1 2 1 0

ēk(i) = dk,Q(i)−w∗k(i− 1)βk,b(i)xk,Q(i) 4M 4M + 2 0 0

Pk(i) = 1
λ

(
Pk(i− 1)−

Pk(i−1)βk,b(i)xk,Q(i)x∗
k,Q(i)βk,b(i)Pk(i−1)

λ+x∗
k,Q

(i)βk,b(i)Pk(i−1)xk,Q(i)βk,b(i)

)
8M2 + 2M − 1 10M2 + 6M + 2 1 0

hk(i) = hk(i− 1) + Pk(i)βk,b(i)xk,Q(i)ē∗k(i) 4M 4M + 2 0 0

wk(i) =
∑
l∈Nk

al,khl(i) 2nkM 4nkM 0 0

Total (DQA-RLS at node k) 8M2 + 2b + 2

(2nk + 10)M

10M2 + 2b+1+

(4nk + 14)M + 13

2b + 3 2b

Total (DRLS [12] at node k) 8M2 − 1+

(2nk + 10)M

10M2+

(4nk + 14)M

1 0

(a) (b)

Fig. 2. (a) Number of operations per node versus the filter length for nk = 3. and (b) Power consumption of the ADCs in an adaptive IoT network.

V. SIMULATION RESULTS

In this section, we assess the estimation performance of DQA-RLS for a system identification setup in a network with
N = 10 nodes. The impulse response of the unknown system has M = 8 taps, is generated randomly and normalized to one.
We design the ADCs for all nodes with a set of thresholds T̃b = {τ1, . . . , τ2b−1} and labels Lb = {l0, . . . , l2b−1} using the
Lloyd-Max algorithm [36], [37]. The input signals xk(i) at each node are chosen as Gaussian i.i.d. with a covariance matrix
Rxk = Uk diag{sk}U∗k where Uk is an M ×M random unitary matrix and sk is an M × 1 vector with random entries
between 0.5 and 1. The noise samples of each node are drawn from a zero mean white Gaussian process with variance σ2

v,k.
The input regressors and desired signals are quantized with T̃b and Lb to generate xk,Q(i) and dk,Q(i). Fig. 3 plots the network
details.

(a) Distributed network structure (b) Network statistical settings

Fig. 3. A wireless network with N = 10 nodes.
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The simulated MSD learning curves are obtained by ensemble averaging over 100 independent trials. The steady-state MSD
values are obtained by ensemble averaging over 100 independent trials over the last 200 samples. The combining coefficients
al,k are computed by the Metropolis rule [40], γ = 0.9 and λ = 0.99. We have compared the proposed DQA-RLS in table II
with DRLS [12], DLMS [11], and DQA-LMS [29]. The curves with full resolution DRLS and full resolution DLMS legends
refer to the case where the input signals xk(i) and desired outputs dk(i) are not quantized and used as high precision data for
the estimation task by DRLS and DLMS algorithms, respectively, whereas other curves are generated with b-bit quantized
xk,Q(i) and dk,Q(i) as the coarsely quantized data.

Figs. 4 and 5 show the global MSD learning curve (average MSD among nodes) and the node-wise steady state MSD
values obtained from simulations for DRLS and DQA-RLS using different numbers of bits. Curve 1 shows the standard DRLS
performance assuming full resolution ADCs to perform estimation. Curves 2, 4 and 6 show the MSD evolution of the standard
DRLS with signals coarsely quantized with b=1, 2 and 3 bits, respectively. Curves 3, 5 and 7 show the MSD performance of
the proposed DQA-RLS algorithm that improves the MSD performance for coarsely quantized signals. The performance of the
proposed DQA-RLS algorithm is closer to the DRLS while it reduces about 90% of the power consumption related to the
ADCs in the network (see Fig. 2b).

Fig. 4. MSD curves for the DRLS [12] and DQA-RLS algorithms.

Fig. 5. Steady-state MSD values for the DRLS [12] and DQA-RLS algorithms.

In the next two examples, the MSD performance is evaluated for different signal-to-noise ratios (SNRs) adjusted for the
network while nodes are working under different SNRs, i.e., SNR at node k equals the SNR adjusted to the network ±20 % and
the results are shown in Figs. 6 and 7. In particular, Fig. 7 compares the simulation results with those obtained by the analytical
expression in (82). The results in Fig. 7 indicate that the theoretical and simulated results agree well especially for b = 3
and b = 4 bits, and low to moderate values of SNR, confirming the validity of the theoretical development. The node-wise
theoretical and experimental MSD values for different nodes for a moderate SNR are compared in Fig. 8 and authenticate the
validation of the MSD theoretical expression (81).

In Fig. 9, the MSD learning curves of the proposed DQA-RLS is compared with DQA-LMS [29], standard DRLS [12] and
DLMS algorithms [11]. We choose the same step sizes for all agents, i.e., µk = 0.05 for DLMS and DQA-LMS algorithms.
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Fig. 6. Steady-state MSD values for the DRLS [12] and DQA-RLS algorithms for different SNR values.

Fig. 7. Steady-state and theoretical MSD values for the DRLS [12] and DQA-RLS algorithms for different SNR values.

Fig. 8. Node-wise Steady-state and theoretical MSD values for the DRLS [12] and DQA-RLS algorithms.
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It can be seen that the DQA-RLS algorithm improves the estimation performance of the DQA-LMS algorithm while both
outperform the standard DRLS and DLMS, respectively, with coarsely quantized signals. According to curves (5) and (6) in
Fig. 9, in applications in which computational complexity is not a bottleneck, one can use DQA-RLS with 2-bit quantization to
achieve the estimation performance of full resolution DLMS and save a large amount of energy consumption of the ADCs.

(7)(2)

(10)

(5)

(6)
(1)

(8) (3)

(9)(4)

Fig. 9. MSD curves for the DRLS [12], DLMS [11], DQA-RLS and DQA-LMS [29] algorithms.

VI. CONCLUSION

In this paper, we have proposed an energy-efficient framework for distributed learning and developed the DQA-RLS algorithm
along with bias compensation strategies for IoT networks. The DQA-RLS algorithm has comparable computational complexity
to the standard DRLS algorithm while it reduces the power consumption of the ADCs in the network by more than 90%. We
have also carried out a statistical analysis of the DQA-RLS algorithm along with a study of the power consumption of the
proposed and existing techniques. The derived analytical expressions have been shown to accurately predict the MSD of the
DQA-RLS algorithm. Numerical results have shown the excellent performance of DQA-RLS algorithm as compared to the
standard DRLS algorithm for coarsely quantized signals.

APPENDIX

In this Appendix, we obtain the theoretical expressions for Rxk,Q, Rqx,k, and σ2
q̄k

based on Rxk , σ2
v,k for the designed

thresholds and labels. We consider σα(i)β(j) = E[α(i)β∗(j)] and σ2
α(i) = E[α(i)α∗(i)]. From (14) and (8), Rqx,k can be

obtained as follows:

Rqx,k = Rxk,Q −Gk,bRxkGk,b, (85)

where Gk,b is computed as in (10) with Rxk . We evaluate the covariance matrix Rxk,Q whose diagonal entries are given by

[Rxk,Q]m,m = E[|xk,Q(m)|2] = h

2b−1∑
j=0

l2jP[xk,Q(m) = lj ]

= h

2b−1∑
j=0

l2jP[τj ≤ xk(m) = lj < τj+1]

= h

2b−1∑
j=0

l2j

(
Φ
(√hτ2

j+1

σxk(m)

)
− Φ

( √hτ2
j

σxk(m)

))
,

(86)
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where σ2
xk

(m) = E[|xk(m)|2] = [Rxk ]m,m, Φ
(
·
)

refers to the cumulative distribution function and the variable h = 1 for real
data and h = 2 for complex data. The off-diagonal entries of Rxk,Q for 1 < m,n < M and m 6= n are given by

[Rxk,Q]m,n = E[xk,Q(m)x∗k,Q(n)]

=

2b−1∑
j=0

2b−1∑
p=0

lj lpP[xk,Q(m) = lj ,xk,Q(n) = lp]

=

2b−1∑
j=0

2b−1∑
p=0

lj lpP[τj ≤ xk(m) < τj+1,

τp ≤ xk(n) < τp+1].

(87)

Unfortunately, (87) does not have a known closed-form expression and hence, has to be evaluated using numerical methods
[22]. However, in what follows, we shall present a closed-form approximation for the off-diagonal entries of Rxk,Q, following
[23]. Let us rewrite (14) as follows:

xk,Q(i) = Gk,bxk(i) + qx,k(i) = xk(i) + εk(i), (88)

where εk(i) is the quantization error which by definition is the difference between an input value and its quantized value. Each
quantization process is assigned a distortion factor ρq,b(i) to indicate the relative amount of quantization error generated, which
is defined as follows:

ρq,b(i) =
σ2
εk

(i)

σ2
xk

(i)
, (89)

where σ2
xk

(i) is the variance of the input and the distortion factor ρq,b(i) depends on the number of quantization bits b, the
quantizer type (uniform or non-uniform) and the probability density function of xk(i) [23]. For Gaussian inputs and a scalar
non-uniform quantizer, e.g., Lloyd-Max quantizer, the distortion factor ρq,b(i) = ρq,b can be obtained from Table IV in [37] for
different b and asymptotically approximated by ρq,b = π

√
3

2 2−2b for b > 5 [44]. Based on this, we obtain an approximation of
Rxk,Q as follows [23]:

R̂xk,Q ≈ (1− ρq,b)
(
Rxk − ρq,b nondiag{Rxk}

)
, (90)

where the operator nondiag{A} = A− diag{A}. Using this, we approximate the off-diagonal entries [Rxk,Q]m,n as follows:

nondiag{Rxk,Q} = R̂xk,Q − diag{R̂xk,Q}. (91)

Note that we compute the diagonal elements of Rxk,Q directly using (86) instead of using the approximation in (90), to get an
accurate expression for [Rxk,Q]m,m, and approximate the off-diagonal entries [Rxk,Q]m,n from (91).

We now find a closed-form expression for σ2
q̄k

, where q̄k(i) = gk,bvk(i) + qd,k(i) and

σ2
q̄k

= E[q̄k(i)q̄∗k(i)] = g2
k,bσ

2
v,k + E[qd,k(i)q∗d,k(i)]. (92)

From (15), we have
σ2
qd,k

= E[qd,k(i)q∗d,k(i)] = σ2
dk,Q
− g2

k,bσ
2
d,k, (93)

where considering the data model in (1), σ2
d,k is given by

σ2
d,k = E[dk(i)d∗k(i)] = w∗oRxkwo + σ2

v,k. (94)

Finally, using the same evaluation as in (86), the variance of dk,Q is given by

σ2
dk,Q

= E[dk,Q(i)d∗k,Q(i)] = h

2b−1∑
j=0

l2jP[xk,Q(m) = lj ]

= h

2b−1∑
j=0

l2jP[τj ≤ dk = lj < τj+1]

= h

2b−1∑
j=0

l2j

(
Φ
(√hτ2

j+1

σd,k

)
− Φ

(√hτ2
j

σd,k

))
.

(95)
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TABLE IV
DISTORTION FACTOR ρq,b FOR DIFFERENT ADC RESOLUTIONS b [37]

b 1 2 3 4 5

ρq,b 0.3634 0.1175 0.03454 0.009497 0.002499
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