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Energy-Efficient Distributed Learning with Coarsely
Quantized Signals

Alireza Danaee, Rodrigo C. de Lamare and Vı́tor H. Nascimento

Abstract—In this work, we present an energy-efficient dis-
tributed learning framework using low-resolution ADCs and
coarsely quantized signals for Internet of Things (IoT) networks.
In particular, we develop a distributed quantization-aware least-
mean square (DQA-LMS) algorithm that can learn parameters
in an energy-efficient fashion using signals quantized with few
bits while requiring a low computational cost. We also carry out
a statistical analysis of the proposed DQA-LMS algorithm that
includes a stability condition. Simulations assess the DQA-LMS
algorithm against existing techniques for a distributed parameter
estimation task where IoT devices operate in a peer-to-peer mode
and demonstrate the effectiveness of the DQA-LMS algorithm.

Index Terms—Distributed learning, energy-efficient signal pro-
cessing, adaptive algorithms, coarse quantization.

I. INTRODUCTION

D ISTRIBUTED signal processing algorithms are of great
relevance for statistical inference in wireless networks and

applications such as wireless sensor networks (WSNs) [1] and
the Internet of Things (IoT) [2]. These techniques deal with the
extraction of information from data collected at nodes that are
distributed over a geographic area. Prior work on distributed
approaches has studied protocols for exchanging information
[3]–[5], adaptive learning algorithms [6], [7], the exploitation
of sparse measurements [8], [9], topology adaptation [10],
compensation methods for highly correlated input signals [11],
and robust techniques against interference and noise [12].
Although there are many studies on the need for data exchange
and signaling among nodes as well as their complexity, prior
work on energy-efficient techniques is rather limited.

In this context, energy-efficient signal processing techniques
have gained a great deal of interest in the last decade or so
due to their ability to save energy and promote sustainable
development of electronic systems and devices. Electronic
devices often exhibit a power consumption that is dependent
on the communication module [13], [14] and from a circuit
perspective on analog-to-digital converters (ADCs) and de-
coders [15]. Reducing the number of bits used to represent
digital samples can greatly decrease the energy consumption
by ADCs [16]. This is key to devices that are battery operated
and wireless networks that must keep the power consumption
to a low level for sustainability reasons. In particular, prior
work on energy efficiency has reported many contributions in
signal processing for communications and electronic systems
that operate with coarsely quantized signals [17]–[22].

In this work, we propose an energy-efficient distributed
learning framework using low-resolution ADCs and coarsely
quantized signals for IoT networks. In particular, we devise a
distributed quantization-aware least-mean square (DQA-LMS)
algorithm that can learn parameters in an energy-efficient way
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using signals quantized using few bits with a low computational
cost. We also develop a statistical analysis of the DQA-LMS
algorithm that includes a stability condition. Simulations assess
the DQA-LMS algorithm against existing techniques for a
distributed parameter estimation task with IoT devices.

This paper is structured as follows: Section II introduces
the signal model and states the problem. Section III details the
proposed DQA-LMS algorithm, whereas Section IV analyzes
DQA-LMS. Section V shows and discusses the simulation
results and Section VI draws the conclusions of this work.

II. SIGNAL MODEL AND PROBLEM STATEMENT

 

Fig. 1. A distributed adaptive IoT network

We consider an IoT network consisting of N nodes or agents,
which run distributed signal processing techniques to perform
the desired tasks, as depicted in Fig. 1. The model adopted
considers a desired signal dk(i), at each time i, described by

dk(i) = wH
o xk(i) + vk(i), k = 1, 2, . . . , N, (1)

where wo ∈ CM×1 is the parameter vector that the agents must
estimate, xk(i) ∈ CM×1 is the regressor and vk(i) represents
Gaussian noise with zero mean and variance σ2

v,k at node
k. We adopt the Adapt-then-Combine (ATC) diffusion rule
as it outperforms the incremental and consensus protocols
[3], [4]. At each node k and time i, based on the local data
{dk(i), xk(i)} and the estimated parameter vectors hl(i) from
its neighborhood, the parameter vector with local estimates
wk(i) is updated. The ATC distributed LMS (DLMS) algorithm
consists of the recursions:

hk(i) =wk(i− 1) + µkxk(i)e∗k(i), wk(i) =
∑
l∈Nk

alkhl(i),

where hk(i) and wk(i) contain the intermediate and the local
estimates of wo at node k and time i, respectively, ek(i) =
dk(i)− d̂k(i) = dk(i)−wH

k (i− 1)xk(i) is the error between
the output of the adaptive filter, d̂k(i), and the desired signal,
dk(i), at time i, µk is the step-size for node k, Nk is the
set of neighbor nodes connected to node k, and alk are the
combination coefficients of neighbor nodes at node k such that

alk = 0 if l /∈ Nk, alk > 0 if l ∈ Nk, and
∑
l∈Nk

alk = 1. (2)
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As shown in Fig. 1, as the measurement data at each node
and the unknown system are analog and each agent processes
local data {dk(i), xk(i)} digitally, we need two ADCs in each
agent. One concern is that as the number of agents increases,
the power consumption will grow considerably when using
high-resolution ADCs for each agent. This motivates us to
quantize signals using few bits. Therefore, the problem we
are interested in solving is how to design energy-efficient
distributed learning algorithms that can cost-effectively operate
with coarsely quantized signals.

III. PROPOSED DQA-LMS ALGORITHM

Let xk,Q = Qb(xk) denote the b-bit quantized output of
an ADC at node k, described by a set of 2b + 1 thresholds
Tb = {τ0, τ1, ..., τ2b}, such that −∞ = τ0 < τ1 < ... < τ2b =
∞, and the set of 2b labels Lb = {l0, l1, ..., l2b−1} where
lp ∈ (τp, τp+1], for p ∈ [0, 2b − 1] [18]. Let us assume that
xk ∼ CN (0, Rxk

), where Rxk
∈ CM×M is the covariance

matrix of xk. We now use Bussgang’s theorem [23] to derive
a model for the quantized vector xk,Q, which we will use later
to derive our DQA-LMS algorithm. Employing Bussgang’s
theorem, xk,Q can be decomposed as

xk,Q = Gk,bxk + qk, (3)

where the quantization distortion qk is uncorrelated with xk,
and Gk,b ∈ RM×M is a diagonal matrix described by

Gk,b = diag(Rxk
)−

1
2

2b−1∑
j=0

lj√
π

[
exp(−τ2j diag(Rxk

)−1)

− exp(−τ2j+1diag(Rxk
)−1)

]
.

(4)

Note that this signal decomposition is also applied to the desired
signal, dk,Q, which is the output of the second ADC in the
system, and for the particular case that Rxk

= E[xkx
H
k ] =

σ2
x,kIM , Gk,b becomes gk,bIM . However, to minimize the

mean square error (MSE) between xk and xk,Q, we need to
characterize the probability density function (PDF) of xk to
find the optimal quantization labels. Since the choice of labels
based on the PDF is not practical, we assume the regressor
xk(i) is Gaussian, adapt the approach in [18] and approximate
the thresholds and labels as follows:

1) We generate an auxiliary Gaussian random variable with
unit variance and then use the Lloyd-Max algorithm [24],
[25] to find a set of thresholds T̃b = {τ1, . . . , τ2b−1}
and labels L̃b = {l̃0, . . . , l̃2b−1} that minimize the MSE
between the unquantized and the quantized signals.

2) We complete the set of thresholds Tb by adding τ0 = −∞
and τ2b =∞ to the set T̃b.

3) We rescale the labels such that the variance of the
auxiliary random variable is 1. To do this, we multiply
each label in the set L̃b by

α =
(

2

2b−1∑
j=0

l̃2j (Φ(
√

2τ2j+1)− Φ(
√

2τ2j )
)−1/2

(5)

to produce a set of suboptimal labels Lb = αL̃b , where
Φ(.) is the cumulative distribution function (CDF) of a
standard Gaussian random variable.

We generate these thresholds and labels offline to build Gk,b

for the proposed DQA-LMS algorithm in what follows.

A. Derivation of DQA-LMS

We consider xk(t) and dk(t) as the analog input and output
of the unknown system wo at node k. Let xk(i) and dk(i)
denote the high-precision sampled versions of xk(t) and dk(t),
and xk,Q(i) and dk,Q(i) denote the coarsely quantized versions
of xk(i) and dk(i), respectively. We assume that the input
signal at each node is Gaussian with zero mean and covariance
matrix Rxk

= E[xkx
H
k ] = σ2

x,kIM for k = 1, 2, ..., N . Using
(3), we can decompose xk,Q(i) and dk,Q(i) as

xk,Q(i) = gk,b(i)xk(i) + qx,k(i), (6)
dk,Q(i) = Q(dk(i)) ≈ gk,b(i)dk(i) + qk(i)

= gk,b(i)w
H
o xk(i) + q̂k(i),

(7)

where q̂k(i) = gk,b(i)vk(i) + qk(i) and gk,b(i) are built from
an estimate of Rxk

given by R̂xk
= xkx

H
k [26] that depends

on the choice of xk due to (1). Because the adaptive algorithm
receives a quantized signal, xk,Q, and the signal is assumed
to be wide-sense stationary, at each time instant, we estimate
σ2
x,k using the variance of the received input, σ2

xk,Q
and the

distortion factor of the b-bit quantization, ρk,b, such that σ2
x,k ≈

σ2
xk,Q

+ρk,b, where ρk,b ≈ π
√
3

2 2−2b [19] for a Gaussian signal
using non-uniform quantization to obtain the scalar gk,b(i).

We show next that a learning algorithm based directly on (7)
is biased for estimating wo, and show how to correct for this
bias. For this, let βk(i) be a coefficient to be chosen shortly,
and define d̂k(i) = βk(i)wH

k (i− 1)xk,Q(i) and construct an
MSE cost function as described by

Jk(wk(i)) = E[|ek,Q(i)|2] = E[|dk,Q(i)− d̂k(i)|2]

= E[|dk,Q(i)− βk(i)wH
k (i− 1)xk,Q(i)|2],

(8)

which depends only on the observed quantized quantities
dk,Q(i) and xk,Q(i). For βk(i) = 1 as in DLMS, the
quantization of dk(i) would result in biased estimates of wo.
In the following we show how to optimally choose βk(i) to
reduce the bias. The proposed gradient-descent recursion to
perform distributed learning based on (8) is described by

hk(i) = wk(i− 1)− µk∇Jk(wk(i− 1)). (9)

To compute the gradient of (9), we write the error in (8) as

ek,Q(i) = dk,Q(i)− βk(i)wH
k (i− 1)xk,Q(i)

= gk,b(i)w
H
o xk(i) + q̂k(i)− βk(i)wH

k (i− 1)

(gk,b(i)xk(i) + qx,k(i))

= gk,b(i)(w
H
o − βk(i)wH

k (i− 1))xk(i)

− βk(i)wH
k (i− 1)qx,k(i) + q̂k(i).

(10)

We assume that Rxk
= E[xkx

H
k ] = σ2

x,kIM and Rq,k =

E[qx,kq
H
x,k] = σ2

q,kIM . Substituting (10) in (8) and taking the
expected value of (9), we have

E[hk(i)] =[IM − µkg2k,b(i)βk(i)Rxk
− µkgk,b(i)βk(i)Rq,k]

· E[wk(i− 1)] + µg2k,b(i)Rxk
wH
o . (11)

Substituting the values of Rxk
and Rq,k and taking the limit

on (11), we obtain

lim
i→+∞

E[hk(i)] =
1

βk(i)

gk,b(i)σ
2
x,k

gk,b(i)σ2
x,k + σ2

q,k

wo. (12)
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We conclude that the solution is unbiased if we choose

βk(i) =
gk,b(i)σ

2
x,k

gk,b(i)σ2
x,k + σ2

q,k

. (13)

The gradient of |ek,Q(i)|2 with respect to wH
k is ∇Jk(wk(i−

1)) = − gk,b(i)σ
2
x,k

gk,b(i)σ2
x,k+σ

2
q,k

xk,Q(i)e∗k,Q(i). After organizing the
terms of the gradient, we obtain the DQA-LMS algorithm:

hk(i) = wk(i− 1) + µk
gk,b(i)σ

2
x,k

gk,b(i)σ2
x,k + σ2

q,k

xk,Q(i)e∗k,Q(i),

wk(i) =
∑
l∈Nk

alkhl(i), (14)

ek,Q(i) = dk,Q(i)−
gk,b(i)σ

2
x,k

gk,b(i)σ2
x,k + σ2

q,k

wH
k (i− 1)xk,Q(i) ,

gk,b(i) =
1√
σ2
xk

2b−1∑
j=0

lj√
π

[exp(
−τ2j
σ2
xk

)− exp(
−τ2j+1

σ2
xk

)], (15)

and σ2
x,k ≈ σ2

xk,Q
+ ρk,b. The scalar gk,b can be computed

offline when Rx,k is known and wide-sense stationary and must
be estimated online when Rx,k is unknown or non-stationary.

B. Computational Complexity and Energy Consumption

Table I shows the computational complexity of the DQA-
LMS algorithm in terms of the number of multiplications and
additions at node k per time instant, where nk is the number
of neighbor nodes connected to node k. At each time instant,
DQA-LMS performs a few more operations (≈ O(2b)) than
DLMS. Note that we compute gk,b(i) online since this is more
appropriate for non-stationary input data. However, one can
compute Gk,b offline if an estimate of Rxk

in (4) is available.
However, the extra complexity of DQA-LMS allows the

system to work in a more energy-efficient way. In order to
assess the power savings by low resolution quantization, we
consider a network with N nodes in which each node uses two
ADCs. The power consumption of each ADC is PADC(b) =
cB2b [27], where B is the bandwidth (related to the sampling
rate), b is the number of quantization bits of the ADC, and c
is the power consumption per conversion step. Therefore, the
total power consumption of the ADCs in the network is

PADC,T (b) = 2NcB2b (watts). (16)

Fig. 2 shows an example of the total power consumption of
ADCs in a narrowband IoT (NB-IoT) network running diffusion
adaptation consisting of 20 nodes with bandwidth B = 200 kHz
[28] and considering the power consumption per conversion
step of each ADC, c = 494 fJ, as in [29].

IV. ANALYSIS OF DQA-LMS

In this section, we find sufficient conditions for all local
estimates to converge in the mean to the unknown parameter
vector wo by using the evolution of the weight error vectors
[4]. Let us consider the global quantities of the network: Wo ,
[wo, . . . ,wo](NM×1), dQ(i) , [d1,Q(i), . . . , dN,Q(i)]T , vi ,
[v1(i), . . . , vN (i)]T , XQ(i) , diag[xT1,Q(i), . . . ,xTN,Q(i)].

Using these quantities, the global form of (1) is given by
dQ(i) = WH

o XQ(i)+v(i). Defining B(i), W(i) and H(i) as

Fig. 2. Power consumption of the ADCs in an adaptive IoT network.

the global quantities for, respectively, βk(i), hk(i) and wk(i),
we can express (14) as

H(i) = W(i− 1) + DB(i)XQ(i)(dQ(i)

−B(i)WH(i− 1)XQ(i))∗, W(i) = CH(i),
(17)

which can be written in a compact form as

W(i) = CW(i− 1) + CDB(i)XQ(i)(dQ(i)

−B(i)WH(i− 1)XQ(i))∗,
(18)

where D , diag{µ1IM , . . . , µNIM} and C is an MN×MN
matrix based on the combination coefficients, alk, defined as

A ,
[
aij
]
, C , A⊗ IM . (19)

Using the independence assumption [4] that states that
xk,Q(i) and vk(i) are i.i.d. in time and space with σ2

v,k =
E[|vk(i)|2], and vk(i) is independent of xk,Q(i), we define the
weight error vector, w̃k(i) and its global vector w̃(i) as

W̃(i) , Wo −W(i). (20)

Note that using diffusion combination policies for alk, we have
CWo = Wo [4]. Subtracting Wo from the left-hand side and
CWo from the right-hand side of (18), we have

W̃(i) = CWo −CW(i− 1)−CDB(i)XQ(i)

= CW̃(i− 1)−CDB(i)XQ(i)

(X∗Q(i)B(i)∗W̃(i− 1) + v∗(i))

= C(IMN −DB(i)XQ(i)X∗Q(i)B(i)∗)W̃(i− 1)

−CDB(i)XQ(i)v∗(i). (21)

Taking the expectation of both sides of (21), we have

E[W̃(i)] = C(IMN −DRQ)E[W̃(i− 1)], (22)

where C , E[C], RQ , diag{R1,Q, . . . ,RN,Q} and Rk,Q =
E[Bk(i)xk,Q(i)x∗k,Q(i)Bk(i)∗].

To ensure stability of the recursion in (22) with the inde-
pendence assumption and using combinations that satisfy (2),
there exist sufficiently small step-sizes µk < µmax such that

‖E[W̃(i)]‖bl∞ ≤ ‖C‖bl∞ .‖Ei‖bl∞ .‖E[w̃(i− 1)]‖bl∞ , (23)

where ‖.‖bl∞ denotes the block maximum norm [30] and
Ei = IMN −DRQ. In order for DQA-LMS to converge, we
hold (23) such that ‖E‖bl∞ < 1 and ‖Ci‖bl∞ ≤ 1 for all i ≥ 0.
It is proven in [30] that possibly random, time-varying convex
combinations generated by ATC or CTA diffusion algorithms
ensure ‖Ci‖bl∞ ≤ 1. Therefore, to find sufficient conditions
on step-sizes, we must have IMN −DRQ < 1.
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TABLE I
COMPUTATIONAL COMPLEXITY PER TIME INSTANT

Task Multiplications Additions Divisions Exponentiations

gk,b(i) =
1√
σ2
xk

2b−1∑
j=0

lj√
π
[exp(

−τ2j
σ2
xk

)− exp(
−τ2j+1

σ2
xk

)] 2b+1 + 1 2b − 1 2b + 1 2b

βk(i) =
gk,b(i)σ

2
x,k

gk,b(i)σ
2
x,k

+σ2
q,k

2 1 1 0

d̂k,Q(i) = βk(i)w
H
k (i)xk,Q(i) M + 1 M − 1 0 0

ek,Q(i) = dk,Q(i)− d̂k,Q(i) 0 1 0 0
hk(i+ 1) = wk(i) + µkβk(i)e

∗
k,Q(i)xk,Q(i) M + 2 M 0 0

wk(i+ 1) =
∑
l∈Nk

alkhl(i+ 1) nkM nkM 0 0

Total (at node k) (2 + nk)M + 2b+1 + 6 (2 + nk)M + 2b 2b + 2 2b

We now employ the eigenvalue decomposition Rk,Q =
Φk,QΛk,QΦH

k,Q, where Λk,Q is an M × M diagonal ma-
trix consisting of the eigenvalues {λ(k,Q)1 , . . . , λ(k,Q)M } of
Rk,Q, and the matrix Φk,Q is an M × M square matrix
whose columns are the eigenvectors {φ(k,Q)1 , . . . ,φ(k,Q)M }
of Rk,Q associated with these eigenvalues. We define ΦQ ,
diag{Φ1,Q, . . . ,ΦN,Q} and ΛQ , diag{Λ1,Q, . . . ,ΛN,Q}.
Since ΦH

QDΦQ = D, the condition on the step size can
be written as ‖IMN −DΛQ‖∞ < 1, which yields

‖IMN −DΛQ‖∞ = max
1≤k≤N

‖IM − µkΛk,Q‖

= max
1≤k≤N

max
1≤m≤M

|1− µkλ(k,Q)m | < 1,

where λ(k,Q)m is the mth diagonal eigenvalue of Rk,Q.
Therefore, the stability condition for DQA-LMS is given by

0 < µk <
2

λmax(Rk,Q)
for all k = 1, 2, . . . , N. (24)

V. SIMULATION RESULTS

In this section, we assess the performance of the DQA-
LMS algorithm for a parameter estimation problem in an IoT
network with N = 20 nodes. The impulse response of the
unknown system has M = 8 taps, is generated randomly
and normalized to one. The input signals xk(i) at each node
are generated by passing a white Gaussian noise process
with variance σ2

x,k through a first order autoregressive model
with transfer function 1

1−rx,kz−1 where rx,k ∈ (0.3, 0.5) are
the correlation coefficients and quantized using Lloyd-Max
quantization scheme to generate xk,Q(i). The noise samples of
each node are drawn from a zero mean white Gaussian process
with variance σ2

v,k. Fig. 3 plots the network details.

(a) Distributed network structure (b) Variances and correlation coefficients
Fig. 3. A wireless network with N = 20 nodes.

The simulated mean-square deviation (MSD) learning curves
are obtained by ensemble averaging over 100 independent

trials. We choose the same step sizes for all agents, i.e.,
µk = 0.05. The combining coefficients alk are computed by
the Metropolis rule. The evolution of the ensemble-average
learning curves, 1

NE[‖w̃i‖2], for the ATC diffusion strategy
using different numbers of bits is assessed. The theoretical MSD
of the DLMS with the same step size µ and the Metropolis
rule applied to alk is approximated by µM

N2

∑N
k=1 σ

2
v,k [5]

and shown by curve 1. Curve 2 shows the standard DLMS
performance assuming full resolution ADCs to perform system
identification. Curves 3, 5 and 7 show the MSD evolution of the
standard DLMS with low resolution signals coarsely quantized
with 1, 2 and 3 bits, respectively. Curves 4, 6 and 8 show
the MSD performance of the proposed DQA-LMS algorithm
that improves the error measurement confronted with coarsely
quantized signals. The performance of the proposed DQA-LMS
algorithm is closer to the DLMS while it reduces about 90% of
the power consumption by ADCs in the network (see Fig. 2).

Fig. 4. The MSD curves for the DLMS and DQA-LMS algorithms.

VI. CONCLUSION

In this paper, we have proposed an energy-efficient frame-
work for distributed learning and developed the DQA-LMS
algorithm using low-resolution ADCs for adaptive IoT networks.
DQA-LMS has comparable computational cost to the full-
resolution DLMS algorithm while it enormously reduces the
power consumption of the ADCs in the network. Simulations
have shown the close performance of DQA-LMS to the DLMS
algorithm despite dealing with coarsely quantized signals.

REFERENCES

[1] J. B. Predd, S. B. Kulkarni, and H. V. Poor, “Distributed learning in
wireless sensor networks,” IEEE Signal Processing Magazine, vol. 23,
no. 4, pp. 56–69, 2006.



5

[2] M. M. Rana, W. Xiang, and E. Wang, “Iot-based state estimation for
microgrids,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1345–
1346, 2018.

[3] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation
in networked multi-agent systems,” Proceedings of the IEEE, vol. 95,
no. 1, pp. 215–233, 2007.

[4] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive
networks: Formulation and performance analysis,” IEEE Transactions
on Signal Processing, vol. 56, no. 7, pp. 3122–3136, 2008.

[5] A. H. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z. J. Towfic, “Diffusion
strategies for adaptation and learning over networks: an examination of
distributed strategies and network behavior,” IEEE Signal Processing
Magazine, vol. 30, no. 3, pp. 155–171, 2013.

[6] S. Xu, R. C. de Lamare, and H. V. Poor, “Distributed estimation over
sensor networks based on distributed conjugate gradient strategies,” IET
Signal Processing, vol. 10, no. 3, pp. 291–301, 2016.

[7] T. G. Miller, S. Xu, R. C. de Lamare, and H. V. Poor, “Distributed
spectrum estimation based on alternating mixed discrete-continuous
adaptation,” IEEE Signal Processing Letters, vol. 23, no. 4, pp. 551–555,
2016.

[8] S. Xu, R. C. de Lamare, and H. V. Poor, “Distributed compressed
estimation based on compressive sensing,” IEEE Signal Processing
Letters, vol. 22, no. 9, pp. 1311–1315, Sep. 2015.

[9] T. G. Miller, S. Xu, R. C. de Lamare, V. H. Nascimento, and Y. Zakharov,
“Sparsity-aware distributed conjugate gradient algorithms for parameter
estimation over sensor networks,” in 2015 49th Asilomar Conference on
Signals, Systems and Computers. IEEE, 2015, pp. 1556–1560.

[10] S. Xu, R. C. de Lamare, and H. V. Poor, “Adaptive link selection
algorithms for distributed estimation,” EURASIP Journal on Advances
in Signal Processing, vol. 2015, no. 1, pp. 1–22, 2015.

[11] S. Zhang and W. X. Zheng, “Distributed separated-decorrelation lms
algorithms over sensor networks with noisy inputs,” IEEE Transactions
on Signal Processing, vol. 68, pp. 4163–4177, 2020.

[12] Y. Yu, H. Zhao, R. C. de Lamare, Y. Zakharov, and L. Lu, “Robust
distributed diffusion recursive least squares algorithms with side infor-
mation for adaptive networks,” IEEE Transactions on Signal Processing,
vol. 67, no. 6, pp. 1566–1581, 2019.

[13] C. Han, J. M. Jornet, E. Fadel, and I. F. Akyildiz, “A cross-layer
communication module for the internet of things,” Computer Networks,
vol. 57, no. 3, pp. 622–633, 2013.

[14] I. Utlu, O. F. Kilic, and S. S. Kozat, “Resource-aware event triggered
distributed estimation over adaptive networks,” Digital Signal Processing,
vol. 68, pp. 127–137, 2017.

[15] A. Mezghani and J. A. Nossek, “Power efficiency in communication
systems from a circuit perspective,” in 2011 IEEE International
Symposium of Circuits and Systems (ISCAS). IEEE, 2011, pp. 1896–
1899.

[16] R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE
Journal on selected areas in communications, vol. 17, no. 4, pp. 539–550,
1999.

[17] L. T. N. Landau and R. C. de Lamare, “Branch-and-bound precoding
for multiuser MIMO systems with 1-bit quantization,” IEEE Wireless
Communications Letters, vol. 6, no. 6, pp. 770–773, Dec 2017.

[18] S. Jacobsson, G. Durisi, M. Coldrey, U. Gustavsson, and C. Studer,
“Throughput analysis of massive MIMO uplink with low-resolution adcs,”
IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp.
4038–4051, 2017.

[19] A. Mezghani, M.-S. Khoufi, and J. A. Nossek, “A modified MMSE
receiver for quantized MIMO systems,” Proc. ITG/IEEE WSA, Vienna,
Austria, pp. 1–5, 2007.

[20] L. T. N. Landau, M. Dörpinghaus, R. C. de Lamare, and G. P.
Fettweis, “Achievable rate with 1-bit quantization and oversampling
using continuous phase modulation-based sequences,” IEEE Transactions
on Wireless Communications, vol. 17, no. 10, pp. 7080–7095, Oct 2018.

[21] Z. Shao, R. C. de Lamare, and L. T. N. Landau, “Iterative detection
and decoding for large-scale multiple-antenna systems with 1-bit adcs,”
IEEE Wireless Communications Letters, vol. 7, no. 3, pp. 476–479, June
2018.

[22] Z. Shao, L. Landau, and R. C. de Lamare, “Adaptive RLS channel
estimation and SIC for large-scale antenna systems with 1-bit ADCs,” in
WSA 2018; 22nd International ITG Workshop on Smart Antennas. VDE,
2018, pp. 1–4.

[23] J. J. Bussgang, “Crosscorrelation functions of amplitude-distorted
gaussian signals,” Tech. Rep. 216, Research Laboratory of Electronics,
Massachusetts Institute of Technology, 1952.

[24] S. Lloyd, “Least squares quantization in PCM,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982.

[25] J. Max, “Quantizing for minimum distortion,” IRE Transactions on
Information Theory, vol. 6, no. 1, pp. 7–12, 1960.

[26] Y. Li, C. Tao, G. Seco-Granados, A. Mezghani, A. L. Swindlehurst, and
L. Liu, “Channel estimation and performance analysis of one-bit massive

MIMO systems,” IEEE Transactions on Signal Processing, vol. 65, no.
15, pp. 4075–4089, 2017.

[27] O. Orhan, E. Erkip, and S. Rangan, “Low power analog-to-digital
conversion in millimeter wave systems: Impact of resolution and
bandwidth on performance,” in 2015 Information Theory and Applications
Workshop (ITA). IEEE, 2015, pp. 191–198.

[28] R. Ratasuk, B. Vejlgaard, N. Mangalvedhe, and A. Ghosh, “Nb-iot system
for M2M communication,” in 2016 IEEE wireless communications and
networking conference. IEEE, 2016, pp. 1–5.

[29] H. Chung, A. Rylyakov, Z. T. Deniz, J. Bulzacchelli, G Wei, and
D. Friedman, “A 7.5-GS/s 3.8-ENOB 52-mW flash ADC with clock duty
cycle control in 65nm CMOS,” in 2009 Symposium on VLSI Circuits.
IEEE, 2009, pp. 268–269.

[30] N. Takahashi, I. Yamada, and A. H. Sayed, “Diffusion least-mean squares
with adaptive combiners: Formulation and performance analysis,” IEEE
Transactions on Signal Processing, vol. 58, no. 9, pp. 4795–4810, 2010.


