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ABSTRACT

In this work, we consider an energy-efficient distributed learn-
ing framework using low-resolution ADCs and coarsely quan-
tized signals for Internet of Things (IoT) networks. We de-
velop an adaptive bias compensation strategy to improve the
distributed quantization-aware least-mean square (DQA-LMS)
algorithm and propose the Adaptive DQA-LMS (AdDQA-
LMS) algorithm that can learn parameters in a distributed net-
work with an energy-efficient fashion using signals quantized
with few bits while requiring a low computational cost. Sim-
ulations assess the AdDQA-LMS algorithm against existing
techniques for a distributed parameter estimation task where
IoT devices operate in a peer-to-peer mode and demonstrate
the effectiveness of the AdDQA-LMS algorithm.

Index Terms— Distributed learning, energy-efficient sig-
nal processing, adaptive algorithms, coarse quantization.

1. INTRODUCTION
Distributed signal processing algorithms are of great relevance
for statistical inference in wireless networks and applications
such as wireless sensor networks (WSNs) [1] and the Internet
of Things (IoT) [2]. These techniques deal with the extraction
of information from data collected at nodes that are distributed
over a geographic area. Prior work on distributed approaches
has studied protocols for exchanging information [3–5], adap-
tive learning algorithms [6, 7], the exploitation of sparse mea-
surements [8, 9], topology adaptation [10], and robust tech-
niques against interference and noise [11]. Although there
are many studies on the need for data exchange and signal-
ing among nodes as well as their complexity, prior work on
energy-efficient techniques is quite limited. A distributed
quantization-aware algorithm was proposed in [12] to reduce
the power consumption of analog-to-digital converters (ADCs)
in the adaptive IoT networks in an energy-efficient framework.

In this context, energy-efficient signal processing tech-
niques have gained a great deal of interest in the last decade or
so due to their ability to save energy and promote sustainable
development of electronic systems and devices. Electronic
devices often exhibit a power consumption that is dependent
on the communication module [13] and from a circuit perspec-
tive on analog-to-digital converters (ADCs) and decoders [14].
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Reducing the number of bits used to represent digital samples
can greatly decrease the energy consumption by ADCs [15].
This is key to devices that are battery-operated and wireless
networks that must keep the power consumption to a low level
for sustainability reasons. In particular, prior work on energy
efficiency has reported many contributions in signal processing
for communications and electronic systems that operate with
coarsely quantized signals [16–20].

In this work, we propose an energy-efficient distributed
learning framework using low-resolution ADCs and coarsely
quantized signals for IoT networks. In particular, we de-
vise an adaptive distributed quantization-aware least-mean
square (AdDQA-LMS) algorithm that employs an adaptive
bias compensation strategy (as opposed to the fixed compen-
sation of [12]) and that can learn parameters in an energy-
efficient way using signals quantized using few bits with a low
computational cost. Simulations assess the AdDQA-LMS al-
gorithm against existing techniques for a distributed parameter
estimation task with IoT devices.

This paper is structured as follows: Section 2 introduces
the signal model and states the problem, whereas Section 3
details the proposed AdDQA-LMS algorithm. Section 4 shows
and discusses the simulation results and Section 5 draws the
conclusions of this work.

2. SIGNAL MODEL AND PROBLEM STATEMENT

 

Fig. 1. A distributed adaptive IoT network
We consider an IoT network withN nodes or agents, which

run distributed signal processing techniques to perform the de-
sired tasks, as depicted in Fig. 1. The model adopted considers
a desired signal dk(i), at each time i, described by



dk(i) = wH
o xk(i) + vk(i), k = 1, 2, . . . , N, (1)

where wo ∈ CM×1 is the parameter vector that the agents
must estimate, xk(i) = [xk(i), xk(i − 1), . . . , xk(i −M +
1)]T ∈ CM×1 is the regressor and vk(i) is Gaussian noise
with zero mean and variance σ2

v,k at node k. We adopt the
Adapt-then-Combine (ATC) diffusion rule as it outperforms
the incremental and consensus protocols [3, 4]. At each node
k and time i, based on the local data {dk(i), xk(i)} and the es-
timated parameter vectors hl(i) from their neighborhood, the
parameter vector with local estimates wk(i) is updated. The
ATC distributed LMS (DLMS) algorithm uses the recursions:

hk(i) = wk(i−1)+µkxk(i)e∗k(i), wk(i) =
∑
l∈Nk

alkhl(i),

where hk(i) and wk(i) contain the intermediate and the local
estimates of wo at node k and time i, respectively, ek(i) =

dk(i)− d̂k(i) = dk(i)−wH
k (i− 1)xk(i) is the error between

the output of the adaptive filter, d̂k(i), and the desired signal,
dk(i), at time i, µk is the step-size for node k, Nk is the
set of neighbor nodes connected to node k, and alk are the
combination coefficients of neighbor nodes at node k such that

alk = 0 if l /∈ Nk, alk > 0 if l ∈ Nk, and
∑
l∈Nk

alk = 1.

As shown in Fig. 1, as the measurement data at each node
and the unknown system are analog and each agent processes
local data {dk(i), xk(i)} digitally, we need two ADCs in each
agent. One concern is that as the number of agents increases,
the power consumption will grow considerably when using
high-resolution ADCs for each agent. This motivates us to
quantize signals using few bits. Therefore, the problem we
are interested in solving is how to design energy-efficient
distributed learning algorithms that can cost-effectively operate
with coarsely quantized signals.

3. PROPOSED ADDQA-LMS ALGORITHM
3.1. Signal Decomposition
Let xk,Q = Qb(xk) denote the b-bit quantized output of an
ADC at node k, described by a set of 2b + 1 thresholds Tb =
{τ0, τ1, ..., τ2b}, such that −∞ = τ0 < τ1 < ... < τ2b =
∞, and the set of 2b labels Lb = {l0, l1, ..., l2b−1} where
lp ∈ (τp, τp+1], for p ∈ [0, 2b − 1] [17]. Let us assume that
xk ∼ CN (0, Rxk), where Rxk ∈ CM×M is the covariance
matrix of xk. We now use Bussgang’s theorem [21] to derive
a model for the quantized vector xk,Q, which we will use later
to derive our AdDQA-LMS algorithm. Employing Bussgang’s
theorem, xk,Q can be decomposed as

xk,Q = Gk,bxk + qk, (2)
where the quantization distortion qk is uncorrelated with xk,
and Gk,b ∈ RM×M is a diagonal matrix described by

Gk,b = diag(Rxk)
− 1

2

2b−1∑
j=0

lj√
π

[
exp(−τ2j diag(Rxk)

−1)

− exp(−τ2j+1diag(Rxk)
−1)
]
,

(3)

where diag(Rxk) is the N ×N diagonal matrix whose entries
are the N diagonal elements of the matrix Rxk . Note that, as

a simplifying approximation, we also apply this signal decom-
position to the desired signal, dk,Q, which is the output of the
second ADC in the system, and for the particular case that
Rxk = E[xkxHk ] = σ2

x,kIM , Gk,b becomes gk,bIM where

gk,b =
1√
σ2
xk

2b−1∑
j=0

lj√
π

(
e
−

τ2j

σ2xk − e
−
τ2j+1

σ2xk

)
. (4)

However, to minimize the mean square error (MSE) be-
tween xk and xk,Q, we need to characterize the probability
density function (PDF) of xk to find the optimal quantization
labels. Because choosing these labels based on such PDF is
ineffective in practice (since the PDFs are difficult to estimate),
we assume the regressor xk(i) is Gaussian, then adapt the
approach in [17] and approximate the thresholds and labels
offline later on with the AdDQA-LMS algorithm.

3.2. The DQA-LMS Algorithm
We consider xk(t) and dk(t) as the analog input and output of
the unknown system wo at node k. Let xk(i) and dk(i) denote
the high-precision sampled versions of xk(t) and dk(t), and
xk,Q(i) and dk,Q(i) denote the coarsely quantized versions of
xk(i) and dk(i), respectively. We assume that the input signal
at each node is Gaussian with zero mean and covariance matrix
Rxk = E[xkx

H
k ] = σ2

x,kIM for k = 1, 2, ..., N . Using (2),
we can decompose xk,Q(i) and dk,Q(i) as

xk,Q(i) = gk,b(i)xk(i) + qx,k(i), (5)

dk,Q(i) = Q(dk(i)) ≈ gk,b(i)dk(i) + qk(i)

= gk,b(i)w
H
o xk(i) + q̂k(i),

(6)

where q̂k(i) = gk,b(i)vk(i) + qk(i) and gk,b(i) are built from
an estimate of Rxk given by R̂xk = xkx

H
k that depends on

the choice of xk due to (1).
It has been shown in [12] that a learning algorithm based

on (6) is biased for estimating wo, and an approach to correct
for this bias was devised. To this end, let βk(i) denote the
bias compensation coefficient, define d̂k(i) = βk(i)w

H
k (i −

1)xk,Q(i) and construct an MSE cost function as described by

Jk(wk(i)) = E[|ek,Q(i)|2] = E[|dk,Q(i)− d̂k(i)|2]
= E[|dk,Q(i)− βk(i)wH

k (i− 1)xk,Q(i)|2],
(7)

which depends only on the observed quantized quantities
dk,Q(i) and xk,Q(i). For βk(i) = 1 as in DLMS, the quanti-
zation of dk(i) would result in biased estimates of wo.

The DQA-LMS solution to Jk(wk(i)) is given by [12]

hk(i) = wk(i− 1) + µkβk(i)xk,Q(i)e
∗
k,Q(i),

wk(i) =
∑
l∈Nk

alkhl(i).
(8)

This solution is unbiased if we choose [12]

βk(i) =
gk,b(i)σ

2
x,k

gk,b(i)σ2
x,k + σ2

q,k

, (9)

where σ2
q,k is the variance of the quantization noise. Note

that gk,b can be computed offline when Rxk is wide-sense
stationary and known or must be estimated online when Rxk
is unknown and non-stationary.



3.3. Proposed Adaptive Bias Compensation
In this section, we propose an adaptive strategy to compute the
bias compensation term βk(i), which uses an approximation
for Rxk by the instantaneous values of the input vector. A
simple approach to estimate Rxk is obtained by employing
the instantaneous values of xkxHk as follows

R̂xk(i) = xk(i)x
H
k (i) M ×M (10)

and consequently for estimating Rxk,Q(i)

R̂xk,Q(i) = xk,Q(i)x
H
k,Q(i) M ×M. (11)

Since we do not have access to the instantaneous values of
xk(i) and process xk,Q(i), we use the following estimate

R̂xk(i) = R̂xk,Q(i) + σ̂2
q,kIM . (12)

Note that we estimate Rxk online to form the diagonal entries
of the matrix Gk,b(i) considering (3) and since Gk,b(i) is a
diagonal matrix whose entries are built based on the diagonal
entries of the covariance matrix Rxk , we only consider the
diagonal entries of R̂xk(i) which can be shown as follows:

R̂xk(i) =

r̂xk(i) . . .
r̂xk(i−M + 1)

 ,
where r̂xk(i) = xk,Q(i)x

∗
k,Q(i) + σ̂2

q,k.
We generate a set of thresholds Tb and labels Lb, and

estimate the variance of the quantization noise, σ2
q,k (as it is

not accessible in practice) with the following offline procedure.

1. We generate an auxiliary Gaussian random variable,
xaux, with unit variance and then use the Lloyd-Max
algorithm [22], [23] to find a set of thresholds T̃b =
{τ1, . . . , τ2b−1} and labels Lb = {l0, . . . , l2b−1} that
minimize the MSE between the unquantized and the
quantized signals.

2. We quantize xaux using T̃b and Lb, generate the quan-
tized signal xaux,Q, and estimate the variance of the
quantization noise, σ2

q,k with the subtraction of the vari-
ance of the quantized auxiliary signal from the variance
of the auxiliary signal

σ̂2
q,k = σ2

xaux − σ
2
xaux,Q . (13)

3. We wrap up the set of thresholds Tb by adding τ0 = −∞
and τ2b =∞ to T̃b.

Table 1 summarizes the AdDQA-LMS algrithm.

3.4. Energy Consumption
As βk(i) in AdDQA-LMS is an M ×M diagonal matrix in-
stead of a single scalar βk(i) in DQA-LMS, we need more
operations to generate the error and the intermediate estimate,
however, the computational complexity still remains in the or-
der of O(M). The extra complexity of the DQA-LMS which
is detailed in [12] allows the system to work in a more energy-
efficient way and the adaptive strategy of the AdDQA-LMS
enables the algorithm to be robust against variations and impre-
cise knowledge of Rxk . In order to assess the power savings

Table 1. Pseudo code of AdDQA-LMS algorithm
Initialization:
wk(−1) = 0 for each node k

Generate Tb and Lb
Compute σ̂2

q,k from (13)

Define βk(−1) = diag(bk(−1), . . . , bk(−M)) = 0

At each time instant i and node k
Receive data
dk,Q(i)

xk,Q(i) = [xk,Q(i), xk,Q(i− 1), . . . , xk,Q(i−M + 1)]T

Repeat
r̂xk (i) = xk,Q(i)x

∗
k,Q(i) + σ̂2

q,k

gk,b(i) =
1√
r̂xk (i)

2b−1∑
j=0

lj√
π

(
e
−

τ2j
r̂xk

(i) − e
−
τ2j+1
r̂xk

(i)

)
bk(i) =

gk,b(i)r̂xk (i)

gk,b(i)r̂xk (i)+σ̂
2
q,k

, update βk(i)

ek,Q(i) = dk,Q(i)−wH
k (i− 1)βk(i)xk,Q(i)

hk(i) = wk(i− 1) + µkβk(i)xk,Q(i)e
∗
k,Q(i)

wk(i) =
∑
l∈Nk

alkhl(i)

by low resolution quantization, we consider a network with
N nodes in which each node uses two ADCs. The power con-
sumption of each ADC is PADC(b) = cB2b [24], where B is
the bandwidth (related to the sampling rate), b is the number of
quantization bits of the ADC, and c is the power consumption
per conversion step. Therefore, the total power consumption
of the ADCs in the network is

PADC,T (b) = 2NcB2b (watts). (14)
Fig. 2 shows an example of the total power consumption
of ADCs in a narrowband IoT (NB-IoT) network running
diffusion adaptation consisting of 20 nodes with bandwidth
B = 200 kHz [25] and considering the power consumption
per conversion step of each ADC, c = 494 fJ, as in [26].

Fig. 2. Power consumption of the ADCs in an IoT network.

4. SIMULATION RESULTS
In this section, we assess the performance of the AdDQA-
LMS algorithm for a parameter estimation problem in an IoT
network with N = 20 nodes. The impulse response of the
unknown system has M = 8 taps, is generated randomly and
normalized to one. The input signals xk(i) at each node are



(a) Distributed network (b) Input and noise variances
Fig. 3. A wireless network with N = 20 nodes.

generated by a white Gaussian noise process with variance
σ2
x,k and quantized using Lloyd-Max quantization scheme to

generate xk,Q(i). The noise samples of each node are drawn
from a zero mean white Gaussian process with variance σ2

v,k.
Fig. 3 plots the network details.

Fig. 4. MSD curves for DLMS and AdDQA-LMS algorithms.

Fig. 5. The MSD curves for the DLMS, DQA-LMS, and
AdDQA-LMS algorithms.

The simulated mean-square deviation (MSD) learning
curves are obtained by ensemble averaging over 100 indepen-
dent trials. We choose the same step sizes for all agents, i.e.,
µk = 0.05. The combining coefficients alk are computed by
the Metropolis rule. The evolution of the ensemble-average
learning curves, 1

NE[‖w̃i‖2], for the ATC diffusion strategy
with different numbers of bits is assessed. The theoretical

Fig. 6. The steady state MSD curves for the DLMS, DQA-
LMS, and AdDQA-LMS algorithms.

MSD of the DLMS with the same step size µ and the Metropo-
lis rule applied to alk is approximated by µM

N2

∑N
k=1 σ

2
v,k [5]

and shown by curve 1. Curve 2 shows the standard DLMS
performance assuming full resolution ADCs to perform system
identification. Curves 3, 5 and 7 show the MSD evolution
of the standard DLMS with low resolution signals coarsely
quantized with 1, 2 and 3 bits, respectively. Curves 4, 6 and 8
show the MSD performance of the proposed AdDQA-LMS al-
gorithm that improves the MSD for coarsely quantized signals.
The performance of the proposed AdDQA-LMS algorithm is
closer to the DLMS while it reduces about 90% of the power
consumption of ADCs in the network (see Fig. 2).

In the next experiment, the MSD learning curves of the
proposed AdDQA-LMS and DQA-LMS [12] are compared
and the learning performance of the algorithms is shown in
Fig. 5. It can be seen that the AdDQA-LMS improves the esti-
mation performance of the DQA-LMS while both outperform
the standard DLMS with low resolution signals coarsely quan-
tized. Fig. 6 shows the node-wise steady state MSD values of
the proposed AdDQA-LMS, DQA-LMS, and standard DLMS,
by averaging the MSD values over the last 200 time samples.

5. CONCLUSION
In this paper, we have considered an energy-efficient frame-
work for distributed learning and developed the AdDQA-LMS
algorithm using low-resolution ADCs for adaptive IoT net-
works to improve the performance of the DQA-LMS. Simula-
tions have shown the close performance of AdDQA-LMS to
the DLMS algorithm while it enormously reduces the power
consumption of the ADCs in the network operating with
coarsely quantized signals.
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