
Distributed DoS Attack Detection in SDN:
Tradeoffs in Resource Constrained Wireless

Networks
Gustavo A. Nunez Segura∗, Arsenia Chorti‡, and Cintia Borges Margi∗
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Abstract—The Software-defined networking (SDN)
paradigm centralizes control decisions to improve
programmability and simplify network management.
However, this centralization turns the network vulnerable
to denial of service (DoS) attacks, and in the case of
resource constrained networks, the vulnerabilities escalate.
The main shortcoming in current security solutions is
the tradeoff between detection rate and complexity. In
this work, we propose a DoS attack detection algorithm
for SDN resource constrained networks, based on recent
results on non-parametric real-time change point detection,
and lightweight enough to run on individual resource
constrained devices. Our experiment results show detection
rates and attacker identification probabilities equal or over
0.93.

Index Terms—Software-defined networking, intrusion de-
tection, wireless sensor networks

I. INTRODUCTION

Software-defined networking (SDN) is a paradigm that
centralizes network control decisions and enables the
network to be intelligently and centrally programmed.
These characteristics simplify network management and
provide tools for infrastructure sharing [1].

SDN centralization provides advantages and disadvan-
tages in terms of network security: on one side, the
controller’s global view has been used to develop new
security strategies [2], on the other side, the controller is
a single point of failure, which turns SDN-based networks
prone to DoS attacks [3] [4]. In the case of resource
constrained networks, as wireless sensor networks for
Internet of things, SDN vulnerabilities are critical since
there are less resources to detect and mitigate attacks.
Consequently, current standard SDN security solutions
adaptation is not trivial.

Since SDN centralizes the control logic of the net-
work, most of works in the literature propose centralized
security solutions. This has benefits, such as a global
view of the network and high processing power, but
it also requires a constant communication between the
network devices and the controller. This means more
energy and communication resources consumption. To
address this issue, we propose a lightweight DoS attack
detection algorithm using change point (CP) analysis to

detect anomalies in the network behavior. We execute
our proposal using a distributed approach, running the
detection algorithm on individual resource constrained
nodes, avoiding the packets overhead caused by the
centralization.

We simulate grid topologies of 100 nodes, where 10%
of nodes are attackers. Our main results show that individ-
ual nodes can detect a DoS attack and identify the attacker
itself with a probability equal or over 0.93, when being
close to the attacker. In addition, we investigate trade-offs
between a fully decentralized and a hybrid approach.

II. RELATED WORK

Machine learning is a popular approach used for se-
curity in SDN since the controller has access to traffic
information that could be used to train the algorithms.
Bhunia and Gurusamy [5], Ravi and Shalinie [6], and
Jia et al. [7] proposals have in common that all of
them obtained high detection rate results, i.e., higher
than 90%, using machine learning techniques. On the
other hand, none of these three proposals considered
resource constraints. The main reason is because these
are OpenFlow-based or require high traffic of packets to
monitor the network.

Some proposals focused on resource limitations. Yin
et al. [8], Miranda et al. [9], and Wang et al. [10]
proposed more lightweight security solutions, but at the
cost of detection rates below 90%. However, these works
proposed multiple types of attack detection and attacker
identification algorithms.

Commonly, security in SDN is centralized, but nev-
ertheless, there are distributed-based proposals in the
literature. One reason to use distributed approaches is to
avoid control overhead that could saturate vital control
links. To address this shortcoming, Fawcett et al. [11]
proposed Tennison, a framework for scalable network
security based on multi-level flow monitoring. Distributed
approaches have been used also to detect anomalies in
local sub-networks [12]

The main shortcoming in the state of the art is the trade-
off between detection rate and solution complexity. The
proposals that attained high detection rate were not suited



for resource constrained networks, and proposals that con-
sidered resource limitations did not attain high detection
rates. We propose a DoS attack detection algorithm for
SDN resource constrained networks, lightweight enough
to run on individual resource constrained devices. Results
show a detection probability comparable to centralized
proposals, but reducing packets traffic, a key shortcoming
in centralized solutions.

III. SDN SECURITY VULNERABILITIES

In SDNs, the attackers can reach the control plane
directly through the controller(s) or through network
devices. Control packets flooding attacks are common
since these packets have to reach the controller to be
processed, which can lead to processing and communi-
cation resources exhaustion. The attackers are also able
to mislead other network devices and induce them to flood
the network.

The SDN controller needs topology information to op-
erate. To this end, the network devices send neighborhood
information to the controller for configuration and control
decisions. In the case of wireless SDN networks, attackers
may hear this information and use it to mislead the
controller to take wrong routing decisions. In the case of
SDN resource constrained networks, these attacks target
specific characteristics. Attackers can launch control plane
attacks to saturate flow tables and buffers of devices with
low storage capacity. A saturated node may not have
space to forward new packets or receive new routing
rules. This will trigger a series of packets retransmissions,
which means more energy, processing and communication
resources consumption. Since the network operation de-
pends on the controller, if this do not take actions, the
network devices can exhaust all their resources.

In a previous work [13], we analyzed the impact of the
false data flow forwarding (FDFF) attack in SDWSNs.
The FDFF attack targets the controller via network de-
vices. First, the attacker sends data packets with unknown
flow identifiers to its neighbors. The neighbors receive
the packet and check the flow table to determine the
action required, without success, thus they ask a rule
to the controller by sending a flow rule request packet.
The controller receives this packet, calculates the rule and
replies sending a flow setup packet. This attack increases
the control and processing overhead, and saturate the flow
tables on the nodes close to the attackers.

IV. DISTRIBUTED DOS ATTACK DETECTION

From [14] and [15] we know that our CP detection
algorithm, based on [16] [17], is able to detect FDFF
attacks with a probability over 0.96, and identify the type
of attack with a probability exceeding 0.89. In this work,
we go further and execute the CP detector running on
individual nodes. Our objectives are: first, to evaluate the
performance in resource constrained devices, and second,

study the tradeoff when running the detectors on every
node in the network and running it in clusters.

A. Change point detection

The problem formulation exploits recent results [16],
[17] on non-parametric real-time CP detection. We
adapted the hybrid offline-online proposal to an entirely
online detector [18]. The proposed procedure is applied
under the assumption that the observations {Xn : n ∈ Z}
satisfy the generalized dependence concept of L-2 near
epoch dependence [19].

To outline the online CP algorithm, let {Xn : n ∈ N}
be the time series of the metric monitored. Using Wold’s
theorem we can assume that, for X1, ..., XN , each sample
is expressed as Xn = µn+Yn, where {µn, n ∈ N} is the
mean of the time series and {Yn : n ∈ N} is a random
zero mean term, so that we can rewrite Xn as:

Xn =

{
µ+ Yn, n = 1, . . . ,m+ k∗ − 1

µ+ Yn + I, n = m+ k∗, . . .
(1)

where µ, I ∈ Rr, represent the mean parameters before
and after the unknown time of possible change k∗ ∈ N∗
respectively. The term m denotes the length of an initial
period assuming no change on the mean value, i.e, µ1 =
· · · = µm. During this period, our detector “learns” in
real-time the statistics of the observed time series, and, the
mean value in particular. Finally, the statistical hypothesis
test is articulated as: H0 : I = 0, H1 : I 6= 0.

The online analysis is a stopping time stochastic pro-
cess defined as:

τ(m) =

{
min{l ∈ N : TSon(m, l)> F (m, l)},
∞, if TSon(m, l)< F (m, l) ∀l ∈ N,

(2)

where TSon(m, l) is the detector, calculated online for
every l, and F (m, l) is the given threshold; with prop-
erties limm→∞ Pr{τ(m) <∞|H0} = α, ensuring that
the probability of false alarm is asymptotically bounded
by α ∈ (0, 1), and, limm→∞ Pr{τ(m) <∞|H1} = 1,
ensuring that under H1 the asymptotic power is unity.
Under these conditions, F (m, l) = cvon,αg(m, l), where
the critical value cvon,α is determined from the asymptotic
distribution of the detector under H0 and the asymptotic
behavior achieved by letting m → ∞. The weight
function is defined as,

g(m, l) =
√
m

(
1 +

l

m

)(
l

l +m

)γ
(3)

where the sensitivity parameter γ ∈ [0, 1/2).
The online algorithm uses the standard CUSUM de-

tector [20], with test statistic denoted by TScton. Its cor-
responding critical value is denoted by cvcton,α and the
stopping rule by τct(m). The sequential CUSUM detector
is denoted by E(m, l) =

(
Xm+1,m+l −X1,m

)
.

The standard CUSUM test is expressed as:

TScton(m, l) = lΩ̂
− 1

2
m E(m, l), (4)



where Ω̂m is the estimated long-run covariance, defined as
in (4), that captures the dependence between observations.
Then, the stopping rule τct(m), is defined as:

τct(m) = min{l ∈ N : ‖TScton(m, l)‖1 ≥ cvcton,αg(m, l)},
(5)

where the `1 norm is involved to modify TScton so that it
can be compared to a one dimensional threshold function.
The critical value, cvcton,α, is derived from the asymptotic
behavior of the stopping rule under H0:

lim
m→∞

Pr{τ(m) <∞} (6)

= lim
m→∞

Pr

{
sup

16l6∞

‖TScton(m, l)‖1
g(m, l)

> cvcton,α

}
= α

(7)

B. DoS attack detection: implementation

In our distributed proposal, every node is able to
monitor a time series using its own metrics and execute
the CP detector algorithm, and also, each node is able to
send metrics samples to a cluster head (CH). In the second
case, the CH is in charge of constructing the time series
of the cluster and execute the detection algorithm. Such
approaches, in which hardware behavior is monitored to
identify anomalies, hints to further integration with other
approaches for the domain of physical layer security [21]
and introducing security controls at all layers.

A security application was programmed in every node.
This application manages the sampling and the detection
algorithm execution. The algorithm initiates constructing
a time series of 200 samples (m = 200), from where
it extracts the statistical information that will use during
the online CP detection. When the online phase starts,
the algorithm continues storing samples. In the case no
CP is detected during the first 50 samples (l = 50),
these samples are added to the 200 samples taken before
to extract new statistical information. But, if a CP is
detected, the application rises an alarm and informs the
controller about the situation.

Since the FDFF attack increases the message exchange
activity, we decided to monitor the transmitting time on
every node, i.e, the number of ticks the radio module
remained turned on transmitting packets. From previous
experiments simulating a real monitoring application [15],
we learned that γ = 0 and m = 200 maximize the
detection rate. In this work we used these values as well.

The security module was implemented in C language
using Contiki-3.0 [22], an operating system for WSN and
IoT, and IT-SDN [23], an SDWSN framework developed
by our research group. For transmitting time sampling
we used Energest [24], a power management module for
Contiki. For control packets sampling we implemented a
counter for this specific type of packets.

(a) FDFF detection: individual nodes

(b) FDFF detection: clusters

Fig. 1: Distributed FDFF attack detection

V. RESULTS AND ANALYSIS

Our analysis follows two approaches: detection perfor-
mance and implementation overhead. For detection per-
formance we analyzed the attack detection probability and
attacker identification probability. For implementation,
we analyzed the packets overhead and memory usage.
Both scenarios were simulated on Cooja [25], simulating
grid topologies of 100 nodes, where 10% of nodes are
attackers and emulating sky motes.

A. Detection performance

Fig. 1 shows the detection probability heatmap for both
the distributed and hybrid approaches. For the case where
each individual node is running the detector (Fig. 1a) the
attackers’ position is represented with an “A”. For the
case where the detector is running on clusters (Fig. 1b),
the heatmap shows also the number of attackers in each
cluster.

In Fig. 1a we observed that the detection probability
is higher around the attackers and around the controller,
with values between 0.93 and 1.00. We expected this
since the FDFF attack targets the control plane through
the attackers’ neighbors, thus the attack has direct impact
on the transmitting time mean value of these nodes. The
CPs detected on the nodes at two or more hops from the
attackers reflect the impact of this attack in the whole
network. The increase in the transmitting time of these
nodes is caused mainly by the increase in the control
packets forwarding. However, individual nodes are not
able to determine if the anomaly is caused by an attack or



a normal behavior. As future work, we intend to address
this in a centralized application that analyzes the alarms
detected to determine if in fact the network is under
attack.

The detection probability results for the clustering case
in Fig. 1b showed that in the clusters where there are one
or two attackers, the detection probability was equal or
above 0.97. In the clusters without attackers, the detection
probability was between 0.63 and 1.00. Similar to the case
running the detector on individual nodes, high detection
probability results in clusters without attackers mean that
this attack impacts on the whole network.

The detection probability results provided two impor-
tant insights: (i) we were able to detect an FDFF attack
when monitoring the transmitting time in either individual
nodes or clusters, and (ii) the detection probability was
lower on the nodes at two or more hops from the attackers.
Based on (ii), we implemented an attacker identification
algorithm for the case running on individual nodes. First,
every time a node receives a data packet with an unknown
flow, it saves the identification address of the sender in
a vector for suspects. Then, if a node detects a CP on
the transmitting time, it sends an alarm to the centralized
security module and informs the address of a suspect.
To determine the suspect, the node checks the last ten
addresses saved in the vector and choose the one with
the highest frequency. We chose ten samples because,
according to [15], the slower detection when γ = 0 takes
around ten samples. When the security module receives
the alarm, sets a counter for every suspect. If the counter
is equal to the number of neighbors of the corresponding
suspect, the suspect is declared as attacker.

The heatmap in Fig. 2 showed that using this algorithm
we were able to correctly identified all the attackers with
a probability equal or above 0.93. In addition, the false
positives were equal to zero. On the other hand, this was
possible only running the detector on every individual
node. In the clustering approach, groups without attackers
inside also obtained high detection rates, which excluded
the possibility of tracking the attacker based only on the
alarm received from the cluster.

B. Implementation comparison

In the clustering approach, the cluster head is in charge
of constructing the time series for the whole cluster and
execute the CP detector. To accomplish this, all nodes
have to monitor their transmitting time and send a sample
to the cluster head, periodically. The cluster head sums
up all the samples received per period and the result is
a new sample of the cluster’s time series. Conversely,
when the CP detector is running on individual nodes, each
one constructs its own transmitting time time series and
executes the CP detector.

The clustering approach has the benefit that it reduces
memory and processing overhead, since the detector is
running on the cluster heads only. Conversely, it increases

Fig. 2: Attacker identification probability:

the packets traffic, since all nodes have to periodically
send a transmitting time sample to the cluster head. In
terms of memory, the time series construction and the
CP detector implementation, for one metric, represents
5956 B. In our specific case using sky motes, this value
represents 12.40% of the total memory.

One security risk when using clustering approaches, is
the possibility of the cluster head to be an attacker. One
way to solve this is using secure cluster head selection al-
gorithms [26], but this requires more memory, processing,
and communication resources, which are already scarce
in our case. One benefit of running the detector on every
node is that we avoid this risk since the attack detection
does not depend on one or few nodes only.

VI. CONCLUSION

In this work we propose a distributed DoS attack
detection for software-defined resource constrained wire-
less networks, based on CP detection. Our proposal is
lightweight enough to run on very limited devices and
detect FDFF attacks with a probability between 0.93
and 1.00, comparable to detection results in centralized
proposals.

This proposal was evaluated running the detector on
every node and running the detector in clusters. Results
showed that both approaches obtained high detection
rate. Additionally, we were able to identify the attackers
without increasing the packets traffic when running the
detector on every node. Comparing the implementations
of both approaches, the clustering approach requires less
memory on every node, while running the detector on
every node reduced the packets traffic.

As future work, we envisage to develop a full imple-
mentation of distributed and centralized approaches and
compare their performance based on security and network
performance metrics.
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