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Abstract—Combinations of adaptive filters have attracted at-
tention as a simple solution to improve filter performance, includ-
ing tracking properties. In this paper, we consider combinations
of LMS and RLS filters, and study their performance for tracking
time-varying solutions. Modeling the variation of the parameter
vector to be estimated as a first order autoregressive (AR)
model, we show that a convex combination between one LMS
and one RLS filters with their optimum settings may have a
tracking performance close to the optimal excess mean-square
error (EMSE) and mean-square deviation (MSD) obtained via
Kalman filter, but with lower computational complexity (linear
in the filter length instead of quadratic — in the case of diagonal
matrices in the Kalman model — or cubic, for general Kalman
models).

Index Terms—Adaptive filter, convex combination, Kalman
filter, tracking

I. INTRODUCTION

When the a priori knowledge about the filtering scenario
is limited or imprecise, selecting the most adequate filter and
adjusting its parameters becomes a challenging task, and erro-
neous choices can lead to a considerable loss in performance.
The Kalman filter (KF) has long been shown to be the optimal
solution to many tracking and data prediction tasks [1], in a
wide variety of applications ranging from navigation [2], [3] to
image processing [4], [5]. This filter is optimal in the sense it
minimizes the mean square error of the estimated parameters
when all noises involved are Gaussian and the parameter vector
to be estimated changes according to a known linear model.
Thus, consider a state-space description of the form:

xi = Fixi−1 + Giti, zi = Hixi−1 + vi, (1)

where xi is the unknown M × 1 state vector, Fi is the
M×M state-transition matrix, Gi is the M×N control-input
model, ti is an N ×1 real Gaussian random state noise vector
with zero mean and covariance matrix Ti, zi is the D × 1
observation vector, Hi is the D × M measurement matrix,
and vi is a D × 1 real Gaussian random measurement noise
vector with zero mean and covariance matrix Vi. Matrices Fi,
Gi, Hi, Ti and Vi are assumed to be real and known.

In this case, given observations zi that satisfy the state-space
model described in (1), an estimate x̂i for xi can be recursively
computed by using the following set of KF equations [6]:

Ωi = Vi + HiPi−1H
T
i , (2a)

Ki = (FiPi−1H
T
i + GiSi)Ω−1

i , (2b)

ei = zi −Hix̂i−1, x̂i = Fix̂i−1 + Kiei, (2c)

Pi = FiPi−1F
T
i + GiTiG

T
i −KiΩiK

T
i , (2d)

where Pi−1 is the M ×M error covariance matrix, i.e.,

Pi−1 = E{(xi−1 − x̂i−1)(xi−1 − x̂i−1)T }, (3)

E{·} denotes expectation, Ki is the M × D Kalman gain,
Si = E{tivTi } and ei is a D × 1 error vector.

As we can see in equations (2b) and (2d), in general one
needs O(M3) operations to compute the Kalman gain and the
covariance matrix Pi−1 or O(M2) operations for a first-order
random walk state-space model of the form

xi = xi−1 + ti. (4)

Depending on the application, this computational cost may
be prohibitive. Variations on the Kalman recursions were pro-
posed to reduce the computational complexity. The Schmidt-
Kalman filter [7, Ch. 9] and the Chandrasekhar-Kailath-Morf-
Sidhu (CKMS) filter [8, Ch. 11 and 13] are able to reduce the
total number of arithmetical operations, but with complexity
still O(M2). Although the hardware technology for embedded
systems is quite powerful, a KF with reduced complexity is
important to deal with real-time systems that require high
sampling rates and low latencies [9]. In the case of active noise
control (ANC) [9] and multi-channel linear-prediction (MCLP)
based for blind speech dereverberation [10], the KF tends to
outperform most adaptive algorithms in terms of convergence
speed and robustness. By enforcing a band-matrix structure
for the covariance matrix Pi in the case of [9] and block-
diagonal matrix in the case of [10], the authors developed low
complexity, i.e O(M), approximations for the KF.

The implementation of a Kalman filter also requires knowl-
edge of a reasonable approximation to the state matrices Fi,
Gi, Hi, and covariance matrices Ti and Vi, which may not be
available in all applications. Model-free adaptive filters such
as the least mean squares (LMS) and recursive least squares
(RLS) algorithms [6], [11]–[13] can be implemented in O(M)
complexity and do not require knowledge of the state matrices.
Their performance, however is suboptimal with respect to that
of the Kalman filter. The purpose of this paper is to study how
well adaptive filters and their combinations can approximate
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the optimum performance of the Kalman filter in tracking
time-varying parameter vectors.

As was shown in [14], through the convex combination
between one LMS and one RLS filters (implemented with
lattice [15] or Dichotomous Coordinate Descent — DCD [16]
algorithms), it is possible to estimate the vector xi modeled
according to (4) with O(M) operations and with an excess
mean square error (EMSE) E{‖Hi(xi−1− x̂i−1)‖2} less than
1dB from the solution obtained via KF. However, since the
covariance matrix of xi goes to infinity as i → ∞, this
model is unstable and does not reflect most practical situations.
Given this scenario, this paper studies the tracking behavior
of combinations of LMS and RLS filters using a more general
model than (4) for the evolution of the optimum parameter
vector xi. Our goal is to describe how close the combination
scheme can get to the optimal excess mean-square error
(EMSE) and mean-square deviation E{‖xi − x̂i‖2} (MSD)
obtained via Kalman filter while keeping the complexity linear
in the filter length. In doing so we are able to derive how fast
the parameter vector can change so that an adaptive filter can
still track the variations.

The contributions of this paper are (the first three contribu-
tions are new with respect to [14]):
• Derivation of a theoretical recursion to estimate the

covariance matrix Pi and the corresponding steady-state
EMSE and MSD of the Kalman filter considering the data
model used in adaptive filtering, in which Hi is random
(an alternate model for the steady-state MSD performance
of the Kalman filter was given recently in [17]);

• The derivation of the fastest speed of change of the
optimum parameter vector (in a sense to be described
later in the text) that an adaptive filter can track. This
result enables us to answer when a model-free adaptive
filter can be used, and in which situations a model-
dependent Kalman filter is necessary. We compare our
bound with the nonstationarity degree (NSD) from [18];

• Derivation of a theoretical model for RLS and the convex
combination of one LMS and one RLS filters under
the autorregressive model (18) for the evolution of the
optimum weight vector;

• The proposal of convex combinations of adaptive filters
as a low-cost approximation to the Kalman filter, and
theoretical expressions to quantify the quality of the
approximation for the proposed model.

II. COMBINATIONS OF ADAPTIVE FILTERS

Combinations of adaptive filters enable a reduction in
the sensitivity of the filter to choices of parameters such
as the step-size, forgetting factor or filter length [13]. The
idea is to combine the outputs of two (or several) different
independently-run adaptive algorithms to achieve better per-
formance than that of a single filter. In general, this approach
is more robust than variable parameter schemes [19].

Due to its relative simplicity, the convex combination of
adaptive filters was the first combined scheme that attracted
attention, but other options are also available [20]–[22]. As
shown in [23], it can be proved that the optimum combination

is universal, i.e, the optimum combined estimate is at least as
good as the best of the component filters in steady-state.

Several applications for combinations of adaptive filters
have been proposed, such as acoustic echo cancellation [24],
adaptive line enhancement [25], array beamforming [26],
and active noise control [27]. Figure 1 illustrates a convex
combination structure between two adaptive filters used to
approximate a given desired variable d(i) based on an input
regressor vector ui.

Figure 1. Convex combination of two transversal adaptive filters.

As shown in Figure 1, the output of the convex combination
is computed according to

y(i) = η(i)y(1)(i) + [1− η(i)]y(2)(i), (5)

where η(i) is a mixing parameter that lies in [0, 1], y(n)(i) =

uTi w
(n)
i−1, for n = 1, 2, are the outputs of the transversal filters,

ui is the input regressor vector and w
(n)
i−1 are the weight

vectors of the component filters. The weight vector and the
estimation error of the overall filter are given respectively by

wi = η(i)w
(1)
i + [1− η(i)]w

(2)
i (6)

and

e(i) = d(i)− y(i) = η(i)e(1)(i) + [1− η(i)]e(2)(i). (7)

In order to reduce the gradient noise when η(i) ≈ 0 or
η(i) ≈ 1 and to ensure that η(i) will remain between [0, 1], a
nonlinear transformation of an auxiliary variable a(i) can be
used as follows:

η(i) =
sgm[a(i)]− sgm[−a+]

sgm[a+]− sgm[−a+]
, (8)

where sgm(a) = 1
1+e−a , a(i) is restricted to an interval

[−a+, a+] in order to avoid that the adaptation of a(i) (see
(9) below) slows down too much when η(i) is close to 0 or
to 1 because of the factor sgm[a(i)]{1− sgm[a(i)]} [28]:

a(i+ 1) = a(i)+

+
µa

ε+ p(i)
e(i)[y(1)(i)− y(2)(i)]sgm[a(i)]{1− sgm[a(i)]}.

(9)

Here, ε is a small positive number and p(i) is a low-pass
filtered estimate of the power of [y(1)(i)− y(2)(i)] defined by

p(i) = γp(i− 1) + (1− γ)[y(1)(i)− y(2)(i)]2, (10)
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with 0� γ < 1.
The step-size µa usually will be chosen in the interval

[0.01, 1]. As mentioned in [29], a common choice in practice
for a+ is 4.

It can be shown that the optimum mixing parameter in
steady state is given by [23], [30]:

ηo =
ζ(2) − ζ(12)

ζ(1) − 2ζ(12) + ζ(2)
, (11)

where ζ(12) is the cross EMSE between both filters in the
convex combination which is obtained according to

ζ(12) = lim
i→∞

E{e(1)
a (i)e(2)

a (i)}, (12)

ζ(n) is the steady-state excess mean-square error (EMSE) for
each component filter, given by

ζ(n) = lim
i→∞

E{[e(n)
a (i)]2}, for n = 1, 2 (13)

and e(n)
a (i) is the a priori error given by

e(n)
a (i) = uTi w̃

(n)
i−1, (14)

where w̃
(n)
i−1 = wo

i−1 −w
(n)
i−1 and wo

i is the optimum weight
vector at time i (the adopted model for its time evolution is
given in (18) below).

In equations (13) and (12), the a priori error ea(i) of the
overall combination structure can be written as a function of
the a priori errors of the component filters [19], i.e,

ea(i) = η(i)e(1)
a (i) + [1− η(i)]e(2)

a (i). (15)

As mentioned in [29], the optimum EMSE for the convex
combination between two adaptive filters, using the optimum
mixing parameter ηo, is given by

ζCOMB = ζ(12) +
∆ζ(1)∆ζ(2)

∆ζ(1) + ∆ζ(2)
, (16)

where ∆ζ(n) = ζ(n) − ζ(12), for n = 1, 2.
This paper is organized as follows: in Section III we derive a

general expression for the covariance matrix (23) considering
algorithms of the general class given by (20) and in Section
IV we derive the EMSE and MSD for the LMS and RLS
algorithms, as well as their respective combination and for the
Kalman filter, considering the proposed model (18). Section V
compares the performance of each algorithm under different
conditions, and finally, section VI concludes the paper.

III. TRACKING MODEL

Consider a nonstationary data model relating the random
sequences d(i) and ui through a linear model of the form

d(i) = uTi wo
i−1 + v(i), (17)

where v(i) is a zero-mean random variable with constant
variance σ2

v = E{v(i)}2 and uncorrelated with ui. The weight
vector wo

i is assumed to evolve according to [31]

wo
i = θwo

i−1 +
√

1− θ2qi, (18)

where θ is a scalar variable in the range 0 < θ ≤ 1 and qi
is a stationary random perturbation independent of the (zero

mean) initial conditions {wo
−1,w−1}, of uj for all j and of

d(j) for all j < i. In order to keep the power of the output
signal wo

i independent of θ and be able to study the EMSE
behavior of each filter according to the variation of θ, the
model (18) was defined in such a way that the power of wo

i in
the limit is independent of θ, i.e, limi→∞ E‖wo

i‖2 = E‖qi‖2.
The following assumptions are also considered for this model:
• The sequence {ui} is real and zero mean, and such that

ui is independent of uj for i 6= j (i.e., the sequence is
i.i.d. — independent and identically distributed).

• The noise sequence v(i) is i.i.d.
• The autocorrelation matrix R = E{uiuTi } is positive-

definite (R > 0).
• The random sequences ui and v(i) are jointly Gaussian.
• The sequence qi is i.i.d., zero-mean and with positive-

definite autocorrelation matrix equal to

E{qiqTi } = Q. (19)

• The regressor vector ui is independent of the weight-error
vector w̃i−1. This condition is an approximation, part of
the widely used independence assumptions in adaptive
filter theory [11], [13].

We focus on the convex combination of two algorithms of
the following general class [13]:

w
(n)
i = w

(n)
i−1 + ρ(n)M

(n)
i uie

(n)(i), (20)

where the superscript n is associated to the first (n = 1) or
second (n = 2) filter of the combination, w

(n)
i represents the

length-M coefficient vector, ρ(n) is a step-size (which is equal
to µ(n) for LMS or 1 for RLS), ui is the input regressor vector,
e(n)(i) is the estimation error given by d(i) − uTi w

(n)
i−1 and

M
(n)
i is an M -by-M symmetric nonsingular matrix equal to

the identity matrix for LMS or, in the RLS case, equal to Pi

Pi = R−1
i =

(
νI +

i∑
`=0

λi−`u`u
T
`

)−1

, (21)

where I denotes the M×M identity matrix, λ is the forgetting
factor and νI is an initial condition to guarantee invertibility.

It is common in the literature to evaluate the steady-state
MSD (ε) and EMSE (ζ) for one adaptive filter as

ε = lim
i→∞

Tr{Si}, ζ = lim
i→∞

Tr{RSi}, (22)

where Tr{A} stands for the trace of matrix A and

Si = E{w̃iw̃
T
i }. (23)

As shown in [23], convex combinations of algorithms of the
form (20) are universal in the mean-square error sense, that is,
the performance of the combination (if the optimum mixing
parameter η(i) is used) is always at least as good as that of
the best individual filter. Practical algorithms to estimate η(i)
are described in [19], [23].

As Eweda shows in [32], in problems where it is neces-
sary to track time-varying parameters, either LMS or RLS
may present the best tracking performance, depending on the
statistics of the regressor and the desired signals. In this case,
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[19] shows that there are three possible situations that can
occur in steady-state for the combination: the combination will
closely follow LMS or RLS if one of these filters significantly
outperforms the other, or, if both component filters have
similar performance, the combination may actually outperform
both of them.

Tracking analyses of convex combinations of the algorithms
of the form (20) depend on analytical expressions of the cross-
MSD and cross-EMSE. Using independence assumptions,
such expressions can be obtained through the evaluation of

ε(12) = lim
i→∞

Tr{S(12)
i }, ζ(12) = lim

i→∞
Tr{RS

(12)
i }, (24)

where

S
(12)
i = E{w̃(1)

i (w̃
(2)
i )T }. (25)

It is possible to modify (11) to obtain the value of the mixing
parameter ηo

MSD that minimizes the MSD of the combination.
Unfortunately, estimating ηo

MSD online is not feasible, so we
define the combination MSD using ηo from (11), which is
optimum for the MSE and EMSE and suboptimal for the MSD.
Subtracting (6) from wo

i , it can be shown that

εCOMB = ηo2ε(1) + (1− ηo)2ε(2) + 2ηo(1− ηo)ε(12). (26)

The main focus of the following analysis is on the tracking
behavior of the adaptive filter in steady-state or, in other words,
after initial convergence of the coefficients w

(n)
i . Although

the optimum weights are time-varying, under model (18), the
MSD and EMSE approach a steady-state value as seen in
Section IV.

We start the analysis by subtracting both sides of (20) from
wo
i , to get

w̃
(n)
i = wo

i −w
(n)
i−1 − ρ

(n)M
(n)
i uie

(n)(i). (27)

Using the linear regression model of (17) for the desired
response d(i) and the a priori error signal e(n)

a (i) given by
(14), the error signal defined as e(n)(i) = d(i) − uTi w

(n)
i−1

with n = 1, 2, can be rewritten as:

e
(n)
i = e(n)

a (i) + v(i). (28)

Replacing the model (18) and the error signal e(n)
i given by

(28) into equation (27), we arrive at:

w̃
(n)
i = θwo

i−1 +
√

1− θ2qi −w
(n)
i−1

− ρ(n)M
(n)
i ui[e

(n)
a (i) + v(i)].

(29)

By adding and subtracting (1−θ)wo
i−1 in (29) and replacing

e
(n)
a (i) by (14), we get:

w̃
(n)
i =

[
I− ρ(n)M

(n)
i uiu

T
i

]
w̃

(n)
i−1 − ρ

(n)M
(n)
i uiv(i)

− (1− θ)wo
i−1 +

√
1− θ2qi.

(30)

In order to compute the covariance matrices (23) and (25)
multiply (30) with n = ` by its transpose with n = m and take

the expectation of both sides. Assuming that qi is independent
of the initial conditions and of ui, after some algebra, we get

E{w̃(`)
i (w̃

(m)
i )T } = E{w̃(`)

i−1(w̃
(m)
i−1)T }

− ρ(`)E{M(`)
i uiu

T
i w̃

(`)
i−1(w̃

(m)
i−1)T }

− ρ(m)E{w̃(`)
i−1(w̃

(m)
i−1)Tuiu

T
i M

(m)
i }

− (1− θ)E{w̃(`)
i−1(wo

i−1)T }
+ ρ(`)ρ(m)E{M(`)

i uiu
T
i w̃

(`)
i−1(w̃

(m)
i−1)Tuiu

T
i M

(m)
i }

− (1− θ)E{wo
i−1(w̃

(m)
i−1)T }

+ (1− θ)ρ(`)E{M(`)
i uiu

T
i w̃

(`)
i−1(wo

i−1)T }
+ ρ(`)ρ(m)σ2

vE{M
(`)
i uiu

T
i M

(m)
i }

+ (1− θ)ρ(m)E{wo
i−1(w̃

(m)
i−1)Tuiu

T
i M

(m)
i }

+ (1− θ)2E{wo
i−1(wo

i−1)T }+ (1− θ2)E{qiqTi }.
(31)

To simplify equation (31), the following assumptions will
be considered:
• Assumption 1: The regressor vector ui is independent

of the weight-vector w̃
(n)
i−1 for n = 1, 2;

• Assumption 2: Matrix M
(n)
i varies slowly in relation to

w̃
(n)
i−1. Thus, when M

(n)
i appears inside the expectations

of (31), we simply replace it by its mean M̄(n). For LMS
this assumption is not necessary, since M

(n)
i = I. For

RLS, considering large enough i, we can approximate
E{M(n)

i } by E{Pi} ≈ P̄
∆
= (1− λ)R−1.

• Assumption 3: According to [13]
and relation (25), the value of
E{M(`)

i uiu
T
i w̃

(`)
i−1(w̃

(m)
i−1)Tuiu

T
i M

(m)
i } can be approx-

imated by M̄(`)
{

RTr{RS
(`m)
i−1 }+ 2RS

(`m)
i−1 R

}
M̄(m)

when the input regressor vector ui is Gaussian and real.
By considering the above assumptions and the relation (25),

equation (31) simplifies to:

S
(`m)
i
∼= S

(`m)
i−1 − ρ

(m)S
(`m)
i−1 RM̄(m) − ρ(`)M̄(`)RS

(`m)
i−1

+ ρ(`)ρ(m)M̄(`)
{

RTr{RS
(`m)
i−1 }+ 2RS

(`m)
i−1 R

}
M̄(m)

+ ρ(`)ρ(m)σ2
vM̄

(`)RM̄(m)

+ (1− θ)
[
ρ(`)M̄(`)R− I

]
E{w̃(`)

i−1(wo
i−1)T }

+ (1− θ)E{wo
i−1(w̃

(m)
i−1)T }

[
ρ(m)RM̄(m) − I

]
+ (1− θ)2E{wo

i−1(wo
i−1)T }+ (1− θ2)Q. (32)

As required in (32), the terms E{wo
i−1(wo

i−1)T } and
E{w̃(n)

i−1(wo
i−1)T } can be obtained as follows:

E{wo
i−1(wo

i−1)T } =

= E{(θwo
i−2 +

√
1− θ2qi−1)(θwo

i−2 +
√

1− θ2qi−1)T }
= θ2E{wo

i−2(wo
i−2)T }+ (1− θ2)E{qi−1q

T
i−1}

= θ2E{wo
i−2(wo

i−2)T }+ (1− θ2)Q. (33)

Assuming that the adaptive filter is in steady-state, i.e.:

E{wo
i−1(wo

i−1)T } = E{wo
i−2(wo

i−2)T }, as i→∞, (34)

equation (33) will converge to:

lim
i→∞

E{wo
i−1(wo

i−1)T } = Q. (35)
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The term E{w̃(n)
i−1(wo

i−1)T } can be obtained by taking the
expectation of the product between equation (30) and the
model (18), both at time i− 1, i.e.:

E{w̃(n)
i−1(wo

i−1)T } = E{w̃(n)
i−1(θwo

i−2 +
√

1− θ2qi−1)T }
= θE{w̃(n)

i−2(wo
i−2)T }

− ρ(n)θE{M(n)
i−1ui−1u

T
i−1w̃

(n)
i−2(wo

i−2)T }
− ρ(n)θE{v(i− 1)M

(n)
i−1ui−1(wo

i−2)T }
− θ(1− θ)E{wo

i−2(wo
i−2)T }

+
√

1− θ2
[
θE{qi−1(wo

i−2)T }+ E{w̃(n)
i−2q

T
i−1}

]
− ρ(n)

√
1− θ2E{M(n)

i−1ui−1u
T
i−1w̃

(n)
i−2q

T
i−1}

− ρ(n)
√

1− θ2E{v(i− 1)M
(n)
i−1ui−1q

T
i−1}

− (1− θ)
√

1− θ2E{wo
i−2q

T
i−1}

+ (1− θ2)E{qi−1q
T
i−1}.

Since qi−1 and v(i− 1) are zero-mean and ui−1 is inde-
pendent of w̃

(n)
i−2 and wo

i−2, then

E{w̃(n)
i−1(wo

i−1)T } = θE{w̃(n)
i−2(wo

i−2)T }
− ρ(n)θM̄(n)RE{w̃(n)

i−2(wo
i−2)T }

− θ(1− θ)E{wo
i−2(wo

i−2)T }+ (1− θ2)Q.

(36)

Assuming that the filter is operating in steady-state, i.e

E{w̃(n)
i−1(wo

i−1)T } = E{w̃(n)
i−2(wo

i−2)T }, as i→∞ (37)

and considering that the eigenvalues of θ(I− ρ(n)M̄(n)R) lie
between (-1,1), equation (36) will converge to

lim
i→∞

E{w̃(n)
i−1(wo

i−1)T } = (1− θ)Ψ−1Q, (38)

where Ψ = (1− θ)I + ρ(n)θM̄(n)R.

IV. THEORETICAL STEADY-STATE ANALYSIS

Based on the previous results obtained from model (18),
the next subsections IV-A to IV-D presents the theoretical
steady-state EMSE for four different situations, namely: one
individual LMS filter, one individual RLS filter, their convex
combination and finally for the Kalman filter.

A. Theoretical steady-state EMSE for LMS

To compute the EMSE for an individual LMS filter, sub-
stitute ` = m = 1 in (32), considering M̄(1) = I and
ρ(1) = µ and assuming that the filter is operating in steady-
state, i.e i→∞, we get the following recursion for S

(11)
∞ after

replacing equations (35) and (38) in (32):

S(11)
∞
∼= S(11)

∞ − µ[S(11)
∞ R + RS(11)

∞ ]

+ µ2
{

RTr{RS(11)
∞ }+ 2RS(11)

∞ R
}

+ µ2σ2
vR

+ (1− θ)2[µR− I][(1− θ)I + µθR]−1Q

+ (1− θ)2Q[(1− θ)I + µθR]−1 [µR− I]

+ 2(1− θ)Q.

(39)

To simplify (39) and get an easier expression to deal with,
we multiply and divide by θ the second and third lines of (39)
and reorganize the terms to obtain

S(11)
∞
∼= S(11)

∞ − µ[S(11)
∞ R + RS(11)

∞ ]

+ µ2
{

RTr{RS(11)
∞ }+ 2RS(11)

∞ R
}

+ µ2σ2
vR

+ θ−1(1− θ)2[µθR− θI][I + µθR− θI]−1Q

+ θ−1(1− θ)2Q[I + µθR− θI]−1 [µθR− θI]

+ 2(1− θ)Q.

(40)

By using the push-through identity property A(I+A)−1 =
(I + A)−1A = I − (I + A)−1, where A = µθR − θI, after
some algebra, we obtain the following simplified version of
equation (39)

S(11)
∞
∼= S(11)

∞ − µ[S(11)
∞ R + RS(11)

∞ ]

+ µ2
{

RTr{RS(11)
∞ }+ 2RS(11)

∞ R
}

+ µ2σ2
vR

− θ−1(1− θ)2[(1− θ)I + µθR]−1Q

− θ−1(1− θ)2Q[(1− θ)I + µθR]−1

+ 2θ−1(1− θ)Q.

(41)

Based on (41), instead of computing the steady-state EMSE
for LMS in a direct way, we follow the same steps of [13] and
define the rotated matrix given by S̄

(11)
∞ = UTS

(11)
∞ U, where

U is an orthogonal matrix that diagonalizes R, that is

UTRU = diag(λi)
∆
= Λ (42)

where diag(λi) is a diagonal matrix formed with the eigen-
values λ1, λ2, . . . , λM of R.

A recursion for S̄
(11)
∞ can be obtained by multiplying (41)

from the left by UT and from the right by U. Defining the
rotated matrix Q̄ = UTQU and recalling that R = UΛUT

and I = UUT = UTU, we get after simplifications

S̄(11)
∞
∼= S̄(11)

∞ − µ{S̄(11)
∞ Λ + ΛS̄(11)

∞ }
+ µ2{ΛTr{ΛS̄(11)

∞ }+ 2ΛS̄(11)
∞ Λ}+ µ2σ2

vΛ

− θ−1(1− θ)2[(1− θ)I + µθΛ]−1Q̄

− θ−1(1− θ)2Q̄[(1− θ)I + µθΛ]−1

+ 2θ−1(1− θ)Q̄.

(43)

Using the rotated matrix S̄
(11)
∞ , the steady-state EMSE can

be computed as Tr{ΛS̄
(11)
∞ } and so, it depends only on the

diagonal entries of S̄
(11)
∞ . We can work therefore only with

these diagonal entries and define the vectors

s̄(11)
∞ = diag{S̄(11)

∞ } and ` = diag{Λ}, (44)

where diag{A} represents a column vector with the diagonal
elements of A.

Given this, by applying the diagonal operator to both sides
of equation (43) and taking the limit as i→∞ we obtain

s̄(11)
∞ =

[
2µΛ− µ2``T − 2µ2Λ2

]−1
{
µ2σ2

v`

+
2(1− θ)

θ

{
I−

[
I +

µθ

1− θ
Λ

]−1
}

diag{Q̄}

}
.

(45)
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The steady-state EMSE and MSD can now be computed as

ζLMS = `T s̄(11)
∞ , εLMS = 1

T s̄(11)
∞ , (46)

where 1 =
[
1 1 . . . 1

]T
.

Due to the complexity of (45), we present next an approxi-
mation valid for sufficiently small µ in order to better describe
the qualitative behavior of the LMS filter. We use the analysis
below to show that there is a minimum value for θ, θLMS

min ,
below which the filter is no longer able to track variations in
wo
i . Assuming that the term µ2

{
RTr{RS

(11)
∞ }+ 2RS

(11)
∞ R

}
can be neglected with respect to the three first terms on the
right-hand side of (41) and applying the trace operator to both
sides of this equation, ζLMS reduces to

ζLMS = Tr{RS(11)
∞ } ∼=

1

2µ

{
µ2σ2

vTr{R}

− 2θ−1(1− θ)2Tr
{

[(1− θ)I + µθR]−1Q
}

+ 2θ−1(1− θ)Tr{Q}
}
,

(47)

where we used the property Tr{AB} = Tr{BA}.
Applying the matrix inversion lemma [6] to the term

[(1 − θ)I + µθR]−1 in (47), after some algebra, we obtain
the following approximate expression

ζLMS ∼=
µσ2

vTr{R}
2

+ (1− θ)Tr
{

[(1− θ)I + µθR]−1RQ
}
.

(48)

The µo that minimizes (48) can be obtained by setting the
first derivative of ζLMS equal to zero. When θ = 1, ζLMS

reduces to a linear function of µ given by

ζLMS ∼=
µσ2

vTr{R}
2

∣∣∣∣
θ=1

(49)

and so, the optimum step-size that minimizes (49) is µo = 0
with the corresponding minimum EMSE ζo

LMS = 01.
In order to compute the first derivative of (48) for 0 ≤ θ <

1, we rewrite the terms of (48) as a sum of scalars. To do
this, we use the same decomposition for matrix R described
in (42) and the same matrix Q̄ used in (43) to obtain

ζLMS ∼=
µσ2

vTr{Λ}
2

+ (1− θ)Tr
{

[(1− θ)I + µθΛ)]−1ΛQ̄)
}

=

M∑
i=1

µσ2
vλii
2

+

M∑
i=1

(1− θ)λiiq̄ii
1− θ + µθλii

, (50)

where q̄ii are the diagonal elements of Q̄.
By taking the first derivative of (50) and setting it equal

to 0, after simplifications, we find the following expression
to compute the optimum step-size µ = µo that minimizes the
steady-state EMSE for LMS

M∑
i=1

{
θ(1− θ)λ2

iiq̄ii
(1− θ + µθλii)2

− σ2
vλii
2

}
= 0. (51)

1The reader may find this result puzzling, since the tracking model usually
seen in the literature includes a term proportional to µ−1, resulting in a
positive optimum step size [6], [13]. Our result stems from the factor

√
1− θ2

in our model (18), which we included to keep the power of wo
i independent

of θ. Note that for θ = 1, the optimum step size is µo = 0 because the
model (18) implies that E{wo

i} = 0, and the initial condition in our model
also satisfies E{w−1} = 0.

Since in general a closed solution for µ in (51) is not
possible (if the λii are distinct, (51) would reduce to finding
the roots of a 2M -degree polynomial in µ), we seek solutions
for θ ∈ [0, 1[ numerically. Given this, let us start by naming
f(µ) as the left-hand side of (51), i.e:

f(µ) =

M∑
i=1

{
θ(1− θ)λ2

iiq̄ii
(1− θ + µθλii)2

− σ2
vλii
2

}
.

Since we are seeking conditions under which f(µ) = 0 has
a positive solution, we may start our analysis by finding the
corresponding boundaries of f(µ) when µ→ 0 and µ→∞,
which are:

lim
µ→0

f(µ) =
θTr{Λ2Q̄}

1− θ
− σ2

vTr{Λ}
2

, and

lim
µ→∞

f(µ) = −
M∑
i=1

σ2
vλii
2

= −σ
2
vTr{Λ}

2
.

Since the lower bound limµ→∞ f(µ) is always negative (R
was assumed to be a positive-definite matrix), the upper bound
limµ→0 f(µ) must be greater than or equal to 0 to ensure a
solution for f(µ) = 0. In other words,

θTr{Λ2Q̄}
1− θ

− σ2
vTr{Λ}

2
≥ 0. (52)

By rewriting Tr{Λ2Q̄} as Tr{R2Q} and Tr{Λ} as Tr{R},
after solving inequality (52) for θ, we obtain an expression
for the minimum θ of LMS — θLMS

min — that guarantees an
intersection point µ = µo ≥ 0 between f(µ) and the µ-axis.
This expression is given by

θLMS
min =

γ

γ + 2
, (53)

where γ = σ2
vTr{R}/Tr{R2Q}. For θ < θLMS

min it can be
shown that µo = 0, otherwise µo > 0.

This result can be interpreted as follows: since the steady-
state power of wo

i is independent of θ, and (18) is a low-pass
filter for 0 < θ < 1 with a bandwidth that increases as θ
decreases, we conclude that for θ ≤ θLMS

min , the filter no longer
can track the variations of the weight vector. The optimum
solution µo = 0 in this case results from the assumption that
E{wo

i} = E{w−1} = 0. Section V-A discusses the steady-
state EMSE of the filter when E{wo

i} 6= 0 and θ ≤ θLMS
min .

The nonstationarity degree (NSD) of [18] also provides a
bound for the tracking capabilities of an adaptive filter. Under
our notation, a filter is unable to track a time-varying vector if
NSD = (1− θ2) Tr{RQ}/σ2

v > 1. We provide a comparison
between our result and the NSD in Section V-B.

B. Theoretical steady-state EMSE for RLS

Similar to the LMS filter, to compute the steady-state EMSE
and MSD for an individual RLS filter, we use ` = m = 2,
M̄(2) = P̄ = (1− λ)R−1, ρ(2) = 1 and the same orthogonal
transformation U in (32), obtaining

s̄(22)
∞
∼=
[
2λI− (1− λ)`·−1`T

]−1

{
(1− λ)σ2

v`
·−1 +

2(1− θ)
1− θλ

diag{Q̄}
}
,

(54)
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where `·−1 denotes element-wise inversion. The RLS steady-
state EMSE and MSD are then

ζRLS = `T s̄(22)
∞ , εRLS = 1

T s̄(22)
∞ . (55)

Similarly to the qualitative analysis of the LMS filter devel-
oped in Sec. IV-A, for λ close to 1, the term (1−λ)`·−1`T can
be disregarded with respect to 2λI in (54) and so the EMSE
simplifies to

ζRLS ∼=
(1− λ)σ2

vM

2
+

(1− θ)Tr{RQ}
1− θλ

. (56)

The λo that minimizes (56) can be obtained by setting the
first derivative of ζRLS equal to zero. When θ = 1, ζRLS

reduces to a linear function of (1− λ) given by

ζRLS ∼=
(1− λ)σ2

vM

2

∣∣∣∣
θ=1

(57)

and so, the optimum forgetting factor that minimizes (57) is
λo = 1 with the corresponding minimum EMSE ζo

RLS = 0 (see
the footnote in the previous section).

When 0 ≤ θ < 1, the first derivative of (56) is equal to

∂ζRLS

∂λ
∼=
−σ2

vM

2
+
θ(1− θ)Tr{RQ}

(1− θλ)2
. (58)

Setting (58) equal to 0 and solving for λ leads to the
following expression for λo:

λo ∼= min

{
1−
√

Γ

θ
, 1

}
, (59)

where Γ = 2θ(1− θ)Tr{RQ}/(σ2
vM).

After simplification, the minimum θ for the RLS filter —
θRLS

min — that guarantees λo < 1 in (59) is given by

θRLS
min =

1

2α2 + 1
, (60)

where α =
√

Tr{RQ}/(σ2
vM). The comments at the end of

the previous section also apply here.
a) Remark:: More precise values for θmin than (53) and

(60) can be obtained numerically directly by minimizing the
full expressions for ζLMS (46) and ζRLS (55). We discuss this
further in Section V.

C. Theoretical steady-state EMSE for combination between
LMS and RLS

To compute the steady-state EMSE of the convex combi-
nation between LMS and RLS filters, we assume the LMS
as ` = 1 and the RLS as m = 2, with the corresponding
parameters ρ(1) = µ, M̄(1) = I, ρ(2) = 1 and M̄(2) = P̄ =
(1 − λ)R−1. Following the same steps as for the LMS and
RLS filters, we obtain the diagonal s̄

(12)
∞ of the steady-state

transformed cross-covariance matrix UTS
(12)
∞ U as

s̄(12)
∞ =

{
(1− λ)I + µΛ− µ(1− λ)

(
1`T + 2Λ

)}−1

{
µ(1− λ)σ2

v1−
(1− θ)2

θ
[(1− θ)I + µθΛ]−1diag{Q̄}

+
(1− θ)(1− 2θλ+ θ)

θ(1− θλ)
diag{Q̄}

}
, (61)

and again

ζ(12) = `T s̄(12)
∞ , ε(12) = 1

T s̄(12)
∞ . (62)

For sufficiently small µ and λ close to 1, the term µ(1 −
λ)
(
1`T + 2Λ

)
can be neglected with respect to the three

first terms on the right-hand side of (61), and the following
approximation is obtained for the cross-EMSE:

ζ(12) = Tr{RS(12)
∞ } ∼= µσ2

v(1− λ)Tr{Γ}

−
(1− θ)2Tr

{
Γ[(1− θ)I + µθR]−1Q

}
θ

+
(1− θ)(1− 2θλ+ θ)Tr{ΓQ}

θ(1− θλ)
,

(63)

where Γ = R[µR + (1− λ)I]−1.

D. Theoretical steady-state EMSE for Kalman filter

The straightforward approach to develop a theoretical model
for the steady-state EMSE of the Kalman filter would be to
use the nonstationary data model described in (17). However,
this results in a recursion for the covariance matrix that is
costly to solve. Instead, we define a modified data model
(see (64) below) that can be put in a DARE (Discrete-
Time Algebraic Riccati Equation) format and therefore can be
solved efficiently using iterative procedures (see [33], [34]).

Given this, assume that instead of the linear model for
d(i) presented in (17), we have access to the following
nonstationary data model

uid(i) = uiu
T
i wo

i−1 + uiv(i), (64)

where the optimum solution wo
i is still given by (18).

Comparing the state-space model (1)–(2) with (18)–(64), the
Kalman model corresponding to the nonstationary data model
described in (18) and (64) is presented in Table I.

Table I
RELATION BETWEEN THE KALMAN FILTER AND THE ADAPTIVE FILTER

VARIABLES.

KF - AF KF - AF

xi ↔ wo
i x̂i ↔ wi

zi ↔ uid(i) Hi ↔ uiu
T
i

Fi ↔ θI Gi ↔
√

1− θ2I

vi ↔ uiv(i) ti ↔ qi

Vi ↔ σ2
vR Ti ↔ Q

Since the Kalman model assumes Hi to be deterministic
and ui is random, using the equivalences from Table I in (2d)
and defining w̃i = wo

i −wi, we can use (2d) to write

E{w̃iw̃
T
i |u0, . . . ,ui} = Pi = θ2Pi−1 + (1− θ2)Q

− θ2Pi−1uiu
T
i [σ2

vR + uiu
T
i Pi−1uiu

T
i ]−1uiu

T
i Pi−1,

(65)

where the cross-covariance matrix Si = 0 since v(i) and
qi are independent and zero mean. Now take the expectation
with respect to u0, . . . ,ui, assuming that E{uiuTi [uiu

T
i σ

2
v +

uiu
T
i P̄i−1uiu

T
i ]−1uiu

T
i } ≈ R[σ2

vR + RP̄i−1R]−1R (an
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approximation that tends to be better for long filters [13]),
obtaining the Riccati recursion

P̄i = E{Pi} ∼= θ2P̄i−1 + (1− θ2)Q

− θ2P̄i−1R[σ2
vR + RP̄i−1R]−1RP̄i−1.

(66)

The Kalman EMSE and MSD are obtained using

ζKAL = Tr{RP̄∞}, εKAL = Tr{P̄∞}, (67)

where P̄∞ = limi→∞ P̄i−1 is the solution of the discrete-
time algebraic Riccati equation obtained by substituting P̄i

and P̄i−1 by P̄∞ in (66).
The analytical expressions of the steady-state ζ-EMSE for

LMS, RLS, their convex combination and for the Kalman filter
are summarized in Table II for the general case µ > 0 and
0 � λ < 1 and in Table III for sufficiently small µ and λ
close to 1. The results for the MSD are summarized in Table
IV.

Table II
ANALYTICAL EXPRESSIONS FOR THE STEADY-STATE ζ-EMSE

CONSIDERING LMS, RLS, THEIR CONVEX COMBINATION AND FOR THE
KALMAN FILTER.

ζ-EMSE

ζLMS = `T
[
2µΛ− µ2``T − 2µ2Λ2

]−1
{
µ2σ2

v`

+
2(1− θ)

θ

{
I−

[
I +

µθ

1− θ
Λ

]−1
}

diag{Q̄}
}
,

with Λ = UT RU, Q̄ = UT QU and ` = diag{Λ}.

ζRLS =
(1− λ)σ2

vM

(M + 2)λ−M
+

2(1− θ)Tr{RQ}
[(M + 2)λ−M ](1− θλ)

ζCOMB =
ζLMSζRLS − (ζ(12))2

ζLMS − 2ζ(12) + ζRLS
, where

ζ(12) = `T
{

(1− λ)I + µΛ− µ(1− λ)
(
1`T + 2Λ

)}−1{
+ µ(1− λ)σ2

v1−
(1− θ)2

θ
[(1− θ)I + µθΛ]−1diag{Q̄}

+
(1− θ)(1− 2θλ+ θ)

θ(1− θλ)
diag{Q̄}

}
,

with Λ = UT RU, Q̄ = UT QU and ` = diag{Λ}.

ζKAL = Tr{RP̄∞}, where P̄∞ is the solution of

P̄∞ ∼= θ2P̄∞ + (1− θ2)Q

− θ2P̄∞R[σ2
vR + RP̄∞R]−1RP̄∞.

V. SIMULATIONS

In order to verify the tracking behavior of the proposed
model, we consider a system identification application to
compare the performance of the well known LMS and RLS
filters and their convex combination with the corresponding
optimum solution obtained via Kalman filter.

The unknown plant wo
i , of length M = 7, was initialized

with random values in the interval [−1, 1]. The solution is then

Table III
ANALYTICAL EXPRESSIONS FOR THE STEADY-STATE ζ-EMSE

CONSIDERING LMS, RLS AND THEIR CONVEX COMBINATION FOR
SUFFICIENTLY SMALL µ AND λ CLOSE TO 1.

ζ-EMSE

ζLMS ∼=
µσ2

vTr{R}
2

+ (1− θ)Tr
{

[(1− θ)I + µθR]−1RQ
}

ζRLS ∼=
(1− λ)σ2

vM

2
+

(1− θ)Tr{RQ}
1− θλ

ζCOMB =
ζLMSζRLS − (ζ(12))2

ζLMS − 2ζ(12) + ζRLS
, where

ζ(12) ∼= µσ2
v(1− λ)Tr{Γ} −

(1− θ)2Tr
{
Γ[(1− θ)I + µθR]−1Q

}
θ

+
(1− θ)(1− 2θλ+ θ)Tr{ΓQ}

θ(1− θλ)
,

with Γ = R[µR + (1− λ)I]−1.

Table IV
ANALYTICAL EXPRESSIONS FOR THE STEADY-STATE ε-MSD

CONSIDERING LMS, RLS, THEIR CONVEX COMBINATION AND FOR THE
KALMAN FILTER.

ε-MSD

εLMS = 1
T
[
2µΛ− µ2``T − 2µ2Λ2

]−1
{
µ2σ2

v`

+
2(1− θ)

θ

{
I−

[
I +

µθ

1− θ
Λ

]−1
}

diag{Q̄}
}
,

with Λ = UT RU, Q̄ = UT QU and ` = diag{Λ}.

εRLS = 1
T
[
2λI− (1− λ)¯̀`T

]−1
{

(1− λ)σ2
v
¯̀ +

2(1− θ)
1− θλ

diag{Q̄}
}
,

with Q̄ = UT QU, ` = diag{Λ} and ¯̀ = diag{Λ−1}.

εCOMB = ηo2ε(1) + (1− ηo)2ε(2) + 2ηo(1− ηo)ε(12), where

ηo =
ζ(2) − ζ(12)

ζ(1) − 2ζ(12) + ζ(2)
,

ε(12) = 1
T

{
(1− λ)I + µΛ− µ(1− λ)

(
1`T + 2Λ

)}−1{
+ µ(1− λ)σ2

v1−
(1− θ)2

θ
[(1− θ)I + µθΛ]−1diag{Q̄}

+
(1− θ)(1− 2θλ+ θ)

θ(1− θλ)
diag{Q̄}

}
,

with Λ = UT RU, Q̄ = UT QU and ` = diag{Λ}.

εKAL = Tr{P̄∞}, where P̄∞ is the solution of

P̄∞ ∼= θ2P̄∞ + (1− θ2)Q

− θ2P̄∞R[σ2
vR + RP̄∞R]−1RP̄∞.

changed at each iteration according to the random-walk model
(18). Following [19], the covariance matrix for qi is given by

Q = δ

[
β

R

Tr{R}
+ (1− β)

R−1

Tr{R−1}

]
, (68)

where constant δ has been selected to be δ = 5 · 10−2, so
that Tr{Q} = δ, and β ∈ [0, 1] is a control parameter that
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allows to trade off between a situation with Q ∝ R (for
β = 1, this is the situation in which LMS outperforms RLS
according to [32]) and Q ∝ R−1 (β = 0, the case in which
RLS outperforms LMS).

The regressor ui is obtained from a process u(i) as ui =
[u(i) u(i−1) . . . u(i−M+1)]T , where u(i) is generated with a
first-order autoregressive (AR) model, whose transfer function
is σu

√
(1− b2)/(1 − bz−1) with b = 0.8. This model is fed

with an i.i.d. Gaussian random process with variance σ2
u = 1

7 ,
so that Tr{R} = 1. The output additive noise v(i) is i.i.d.
Gaussian with zero mean and variance σ2

v = 10−2.
Regarding the adjustment for the combinations, we used

convex combinations with fixed step-size µa = 0.25 and
the auxiliary variable a(i) restricted to the interval [−4, 4],
while the optimum step-size and forgetting factor of the
constituent filters were numerically obtained through the the-
oretical steady-state EMSE general equations (46) and (55)
(that is, we find the optimum values without resorting to the
approximations for µ ≈ 0 and λ ≈ 1).

To begin with, let us start the tracking analysis considering
the parameter β = 0.05 in (68). In this case, according
to (53) and (60), the minimum θ that can be used for the
LMS and RLS filters in order to have an optimum step-
size µo > 0 and optimum forgetting factor 0 � λo < 1
is θLMS

min ≈ 0.84 and θRLS
min ≈ 0.92. The bounds obtained

numerically from the general equations (46) and (55) are
θLMS

min ≈ 0.88 and θRLS
min ≈ 0.94. Figure 2 shows the steady-state

EMSEs estimated from the ensemble-average learning curve
obtained from 600 independent runs for 30.000 iterations of
the algorithms µo − LMS, λo − RLS, their combination and
the corresponding Kalman filter when 0 < θ < 1. Figure 3
compares the tracking performance between the simulated case
and the theoretical steady-state EMSE equations provided in
table II when θ lies in the range [min{θLMS

min , θ
RLS
min }, 1].

θ
0 0.2 0.4 0.6 0.8 1

ζ
(d
B
)

-38

-36

-34

-32

-30

-28

-26

-24

Simulated µo-LMS

Simulated λo-RLS

Simulated Combination

Simulated Kalman filter

θLMS
min ≈ 0.88

θRLSmin ≈ 0.94

Figure 2. Simulated steady-state EMSEs curves for µo−LMS, λo−RLS, their
convex combination and the corresponding Kalman filter when 0 < θ < 1.

As can be seen in Figures 2 and 3, for θ ≈ 1, the steady-
state EMSE achieved by combining both LMS and RLS filters
with optimum settings is close to the optimum EMSE obtained

θ
0.88 0.9 0.92 0.94 0.96 0.98

ζ
(d
B
)

-28.5

-28

-27.5

-27

-26.5

-26

-25.5

Simulated µo-LMS
Simulated λo-RLS
Simulated Combination
Simulated Kalman filter
Theoretical µo-LMS
Theoretical λo-RLS
Theoretical Combination
Theoretical Kalman filter

Figure 3. Tracking comparison between the theoretical steady-state EMSE
equations from table II and the simulated case for min{θLMS

min , θ
RLS
min } < θ < 1.

via Kalman filter. As θ decreases, the difference between the
combination and the KF curves starts to increase, reaching its
maximum value for θ ≈ θLMS

min which is approximately 0.80
dB. For θ < min{θLMS

min , θ
RLS
min }, the adaptive filters LMS and

RLS as well as their combination, are no longer tracking the
variations of wo

i since µo ≈ 0 and λo = 1. For θ < 0.2, the
resulting performance for all filters is approximately the same.
The values of µo and λo as θ changes from min{θLMS

min , θ
RLS
min }

to 1 are shown in figure 4.
To see the effect of assumptions of small step-sizes and

λ close to one, in figure 4 we also plot the approximated
curves obtained through expressions (51) and (59). As can be
seen in this figure, for θ < 1, the error between the optimum
parameters estimated numerically from the general equations
provided in table II and by using equations (51) and (59) is
at most ∆µo ≈ 0.05 for µo and ∆λo ≈ 0.01 for λo.

θ
0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

µ
o

0

0.02

0.04

0.06

0.08

1
−
λ
o

0

0.005

0.01

0.015

0.02

General condition - µ > 0

Small step-size - µ ≈ 0

General condition - 0 ≪ λ < 1

λ ≈ 1

∆
µ

o

∆
λ

o

Figure 4. Variation of the optimum parameters for min{θLMS
min , θ

RLS
min } < θ <

1 considering the general and the approximated equations provided in tables
II and III.

By computing the ratio θLMS
min /θ

RLS
min , we are able to compare
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the θ range allowed for each filter and see if they have the same
range (θLMS

min = θRLS
min ) or if one filter is more restrictive than

the other (θLMS
min > θRLS

min or θLMS
min < θRLS

min ). The ratio between
(53) and (60) is given by

θLMS
min

θRLS
min

=
Tr{R}{2Tr{RQ}+ σ2

vM}
M{σ2

vTr{R}+ 2Tr{R2Q}}
. (69)

With this expression, we can see that the value of θmin for
LMS can be smaller or larger than that for RLS, depending on
the values of R and Q. As a simple example, consider σ2

v =

0.01, R = diag(1, 2). If Q = diag(0.01, 0.001), then θLMS
min
θRLS

min
=

1.14, while, for Q = diag(0.001, 0.01) we have θLMS
min
θRLS

min
= 0.830.

By using the theoretical steady-state EMSE equations sum-
marized in table II, Figure 5 compares the tracking behavior
between the LMS, RLS, their combination and the Kalman
filter when β ∈ [0, 1] and θ = 0.99. For this simulation we
kept the same matrices R and Q as well as the parameters σ2

v

and M used to obtain figure 2.

β
0 0.2 0.4 0.6 0.8 1

ζ
(d
B
)

-30

-28

-26

-24

-22

-20

Theoretical µo-LMS
Theoretical λo-RLS
Theoretical Combination
Theoretical Kalman filter

Figure 5. EMSE of µo-LMS, λo-RLS, their convex combination and the
Kalman filter when Q smoothly changes between R and R−1.

As shown in Figure 5, depending on the value of β, the
optimal EMSE for RLS filters can be larger or smaller than
the optimal EMSE for LMS filters, but always lower bounded
by the optimal EMSE provided by the Kalman filter. For the
general equations in which µ > 0 and 0� λ < 1, the optimal
steady-state EMSE curve for the combination is approximately
1dB larger than the optimal KF. However, compared to the
O(M2) complexity of the KF, if lattice [15] or DCD [16]
implementations are used for RLS, the computational cost of
the combination is reduced from O(M2) to O(M). Figure 6
plots the MSD as a function of β, under the same conditions.
Note that we plotted two curves for the combination — one
(green) using the value of the mixing parameter that is optimal
for the MSD, and the second (yellow) using the optimum
mixing parameter for the EMSE, which the filter can estimate
in practice. It can be seen that both are close, but the practical
curve is slightly worse than the best filter at a few points.

In order to see the influence of the filter length M in the
optimal steady-state EMSE of each filter, Figure 7 shows

β
0 0.2 0.4 0.6 0.8 1

ε
(d
B
)

-20

-19

-18

-17

-16

-15

-14

-13

Theoretical µo-LMS

Theoretical λo-RLS

Theoretical Combination - ηo via MSD

Theoretical Combination - ηo via EMSE

Theoretical Kalman filter

Figure 6. MSD of µo-LMS, λo-RLS, their convex combination and the
Kalman filter when Q smoothly changes between R and R−1.

the tracking behavior for the theoretical and simulated µo-
LMS, λo-RLS, their convex combination and for the KF when
M changes from 1 to 200. For this simulation we used the
general equations provided in Table II and compared with the
simulated case using the following parameters σ2

v = 10−2,
Tr{Q} = 5·10−2, β = 0.05, σ2

u = 1
M to keep Tr{R} = 1 and

θ = 0.9999 to cover all possible values of θLMS
min and θRLS

min . In
addition to the simulated case, we used convex combinations
with fixed step-size µa = 0.25, the auxiliary variable a(i)
restricted to the interval [−4, 4] and the optimal steady-state
EMSEs were estimated from the ensemble-average learning
curve obtained from 50 independent runs and 106 iterations
for each algorithm. Due to the long processing time, only a
few points were plotted for the simulated curves.

M
0 50 100 150 200

ζ
(d
B
)

-42

-41

-40

-39

-38
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-35

-34
Theoretical µo-LMS

Theoretical λo-RLS

Theoretical Combination

Theoretical Kalman filter

Simulated µo-LMS

Simulated λo-RLS

Simulated Combination

Simulated Kalman filter

Figure 7. Theoretical and simulated steady-state EMSE for µo-LMS, λo-RLS,
their convex combination and the Kalman filter for 1 ≤M ≤ 200.

As depicted in figure 7, for the defined range M , the optimal
steady-state EMSE for the KF is at most 0.6 dB smaller than
the combination when M > 100, despite the computational
cost for the KF increasing at a rate of O(M2) while the
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combination increases linearly with the filter length.

A. DC analysis of the steady-state EMSE

All simulations performed until now considered a zero mean
plant wo

i , whose values are updated at each iteration according
to model (18), and the parameter θ was always kept greater
than min{θLMS

min , θ
RLS
min } since we were dealing with tracking

problems. Let us assume now that θ < min{θLMS
min , θ

RLS
min } and

the model (18) has a DC component added to the optimum
vector wo

i , i.e

wo
i = θwo

i−1 +
√

1− θ2qi + w̄o, (70)

where w̄o = E{wo
i} is an M × 1 vector.

The simulation in Figure 8 compares the performance of the
Kalman filter, RLS with λ = 1 and LMS with decreasing µ
(see below) considering a nonzero DC component. Figure 8(b)
shows a zoom of the initial iterations of the EMSEs learning
curves. Note that the lag between the responses is due to the
fact that the Kalman filter knows the exact value of the DC
component, while the adaptive filters need to learn it.

i

0 1000 2000 3000

ζ
(i
)
(d
B
)

-30

-20
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10
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RLS
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Kalman filter

(a)

i
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(i
)
(d
B
)

-25

-20

-15
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5
LMS
RLS
Combination
Kalman filter

(b)

Figure 8. Simulated EMSEs learning-curves for θ = 0.5 and w̄o = 1,
focusing on: a) steady-state regime and b) transient behavior. To have a better
visualization of the result, we used doted lines to represent the combination
and the KF curves.

We can see that the adaptive filters, although not able to
track the variations of wo

i (since µo = 0 and λo = 1), are still
able to converge to the DC component w̄o. For this simulation
we plot the EMSEs estimated from the ensemble-average
learning curve of 600 independent runs for 3000 iterations
of the algorithms LMS, RLS, their convex combination and
the KF considering θ = 0.5 and the same matrices R and Q
as well as the parameters σ2

v , β and M used to obtain figure
2.

The following assumptions had to be made in order to
ensure convergence to the optimum solution for both LMS
algorithm and for the KF:
• LMS: the required µo = 0 when θ < θLMS

min can not
be used, since the filter will not be able to adapt and
converge to the mean value of wo

i . For this reason,
we assumed variable step-size µ(i) = 1/i to ensure
equivalence to the RLS case with λ = 1 [35]. To speed up
the convergence rate, we used µ(i) = 1/

√
i for i < 1000.

• KF: we added the a priori information of the DC value
to the estimate x̂i since the KF equations assumes that
xi is zero mean.

B. Comparison between θmin and the nonstationarity degree

The nonstationarity degree (NSD), defined in [18], is an-
other measure of when an adaptive filter is able to track a time-
varying weight vector. It compares the performance (measured
by the steady-state EMSE) of an adaptive filter to estimate
uTi wo

i−1 with the estimate provided by d(i) itself. Let F =
{wi−1 ∈ RM : wi−1 depends only on d(j),uj for j < i} be
the set of possible a-priori estimates. The NSD is defined as

NSD =
minwi−1∈F E

{
[uTi (wi−1 −wo

i−1)]2
}

σ2
v

. (71)

If NSD > 1, [18] argues that an adaptive filter is not able to
track wo

i . Under our model for wo
i (18), the NSD is given by

NSD = (1− θ2)
Tr{RQ}

σ2
v

. (72)

Imposing the condition NSD = 1, we obtain

θNSD
min =

√
max

{
0, 1− σ2

v

Tr{RQ}

}
. (73)

If θ < θNSD
min , all a-priori estimates would have an EMSE

larger than σ2
v , and therefore if the goal of the adaptive filter

were to estimate uTi wo
i−1, no adaptive filter would do better

than simply using d(i) as an estimate (note that θNSD
min tends to

1 as σ2
v → 0).

The minimum values for θ defined in this paper complement
the NSD in two ways: (a) we can also define a condition for
tracking based on the MSD, while the NSD considers only
the EMSE; (b) our estimates for θmin take into account the
DC part of the weight vector, as described in Section V-A
— that is, a situation in which an adaptive filter is useful to
estimate the DC part of the weight vector, but not to track
variations around that DC value.

Figure 9 compares the values of θmin as derived in this paper,
for both EMSE and MSD, with θNSD

min , considering the same
case as in Figure 5, but with σ2

v = 10−3.
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Figure 9. Values of θmin considering the EMSE and NSD (a), and the MSD
(b).

It can be seen on the left panel that the values of θmin
obtained in this paper and through the NSD are quite different:
the condition we use to define when a filter is no longer able
to track is different than the condition used for the NSD.
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VI. CONCLUSION

Combination approaches are an effective way to improve the
performance of adaptive filters. In this paper we have studied
the tracking performance of combinations between LMS and
RLS filters and compared the resulting EMSE with the optimal
case obtained via Kalman filter.

We have shown that, assuming a first order AR model with
finite autocovariance matrix to describe the time variation of
the unknown parameter vector, it is possible to achieve through
convex combination between LMS and RLS filters a steady-
state EMSE and MSD performance close to the optimal case
obtained via Kalman Filter, as long as the pole of the AR
model is greater than a minimum value. This remains true
even if the unknown parameter vector has a DC component.
The minimum value for the pole of the AR model provides a
model for how fast a plant can vary so that an adaptive filter
can still track it.

The advantage of our approach using combinations arises
from the fact that the combination can be implemented with
complexity O(M), while it takes at least O(M2) operations
to compute the corresponding Kalman filter for the model
considered here.
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