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ABSTRACT

Low-resolution precoding techniques have gained considerable at-
tention in the wireless communications area recently. Vital but
hardly discussed in literature, discrete precoding in conjunction with
channel coding is the subject of this study. Unlike prior studies,
we propose three different soft detection methods and an iterative
detection and decoding scheme that allow the utilization of channel
coding in conjunction with low-resolution precoding. Besides an
exact approach for computing the extrinsic information, we pro-
pose two approximations with reduced computational complexity.
Numerical results based on PSK modulation and an LDPC block
code indicate a superior performance as compared to the system
design based on the common AWGN channel model in terms of
bit-error-rate.

Index Terms— Discrete Precoding, Low-Resolution Quanti-
zation, MIMO systems, Log-Likelihood-Ratios, Iterative Detection
and Decoding.

1. INTRODUCTION

Multiple-input multiple-output (MIMO) systems are expected to be
vital for the future of communications [1]. However, the energy con-
sumption and costs related to having multiple radio frequency front
ends (RFFEs) present a challenge for this technology [2].

Energy efficiency is a key requirement for the next generation
of wireless communications. According to [3], 6G networks will re-
quire 10 to 100 times higher energy efficiency when compared to 5G.
Another demand for future networks is higher data reliability [4].

In these circumstances, a challenge for MIMO systems is lower-
ing the energy consumption and costs related to the large number of
RFFEs with minimum bit-error-rate (BER) compromise.

One approach to realize low energy and hardware related costs
is the consideration of low-resolution data converters. Depending on
the pathloss, the converters can be one of the most energy consuming
elements of a RFFE, and, since their consumption scales exponen-
tially with its resolution in amplitude [5], using low-resolution might
be favorable. However, the adoption of low-resolution converters
can cause performance degradation in the BER.

Thus, several discrete precoding approaches have been proposed
in literature. Linear approaches, such as the phase Zero-Forcing (ZF-
P) precoder [6], benefit from a relatively low computational com-
plexity. However, they yield performance degradation in BER espe-
cially for higher-order modulation [7–9]. More sophisticated non-
linear suboptimal approaches have been presented for the downlink
(DL) system in [10–15]. Furthermore, some optimal discrete pre-
coding algorithms exist in the literature such as [16–19].

Both, optimal and suboptimal nonlinear approaches show
promising results in terms of uncoded BER. Yet, practical sys-
tems usually employ coding schemes with soft detection to provide
a higher degree of reliability. Soft detection in conjunction with
discrete precoding was first considered in [20], where convolutional
codes are decoded using a BCJR algorithm in the context of OFDM.

Different from [20], which for computing the log-likelihood-
ratios (LLRs) relies on the common method for AWGN channels,
this study proposes three sophisticated approaches that compute
extrinsic information considering the effects of the discrete precoder
in the probability density function (PDF) of the received signal. The
extrinsic information is then used for computing the LLRs via the
discrete precoding aware (DPA) iterative detection and decoding
(IDD) algorithm.

The first method computes the extrinsic information based on
the true probability density function (PDF) of the received signal.
The second, relies on a nonlinear Gaussian approximation of the
original PDF for its computation. Finally, the third relies on a de-
scription of the received signal by a linear model with a Gaussian
additive distortion term.

The rest of the paper is organized as follows: Section 2 describes
the system model. Section 3 exposes the receiver design. Section 4
exposes numerical results, while Section 5 presents the conclusions.

2. SYSTEM MODEL

This study considers a single-cell Multiuser MIMO DL system in
which the BS has perfect channel state information (CSI) and is
equipped with B transmitting antennas which serves K single an-
tenna users as illustrated by Fig. 1.

A blockwise transmission is considered in which the BS de-
livers Nb bits for each user. The user specific block is denoted
by the vector mk = [mk,1 . . .mk,Nb ], where the index k indi-
cates the k-th user. Each vector mk is encoded into a codeword
vector denoted by ck = [ck,1 . . . ck,Nb

R

], where R is the code

rate. A systematic encoding operation is considered meaning that
ck = [pk,1, . . . , p

k,
Nb(1−R)

R

,mk,1, . . .mk,Nb ], where pk,i is the

i-th parity bit.
Each encoder provides, sequentially over time slots, M bits to a

modulator which maps them into a symbol s ∈ S using Gray coding.
The set S represents all possible symbols of a αs-PSK modulation
and is described by

S =

{
s : s = e

jπ(2i+1)
αs , for i = 1, . . . , αs

}
, (1)

where αs = 2M . The mapping operation is denoted as s[t] =
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Fig. 1: Multiuser MIMO DL with discrete precoding and channel coding

M (rk,t), where rk,t = [rk,t,1, . . . , rk,t,M ] is the t-th bit vector,
taken from ck. The vector rk,t can also be expressed as rk,t =[
ck,(t−1)M+1, . . . , ck,tM

]
for t = 1, . . . , Nb

RM
. After mapping, the

symbols of all K users are represented in a stacked vector notation
as s[t] = [s1[t] . . . sK [t]]T ∈ SK for each time slot t.

The vector s[t] is forwarded to the precoder, which computes
the transmit vector x[t] = [x1[t] . . . xB [t]]T ∈ XB . The entries of
the transmit vector are constrained to the set X , which describes an
αx-PSK alphabet, denoted by

X =

{
x : x = e

jπ(2i+1)
αx , for i = 1, . . . , αx

}
. (2)

A flat fading channel described by the matrix H with coeffi-
cients hk,b is considered, where k and b denote the index of the user
and the transmit antenna, respectively. A block fading model is con-
sidered in whichH is invariant during the transmission time.

The BS computes for each coherence time interval of the chan-
nel the lookup-table L containing all possible precoding vectors,
which then implies s ∈ SK ⇐⇒ x(s) ∈ L.

At the user terminals the received signals are distorted by addi-
tive white Gaussian noise (AWGN) denoted by the complex random
variable wk [t] ∼ CN (0, σ2

w). The received signal from the k-th
user is denoted by zk [t] = hk x [t] + wk [t] , where hk is the k-th
row of the channel matrixH .

Each received signal zk[t] is forwarded to the IDD receiver
where the transmitted block will be estimated. Finally the data
block available to the k-th user reads as m̂k = [m̂k,1, . . . , m̂k,Nb ].

3. RECEIVER DESIGN

This section exposes the design of the DPA-IDD Receiver where
three soft detection methods for the computation of the extrinsic in-
formation are proposed. The objective is to enable channel coding
in conjunction with discrete precoding methods.

The main objective of the DPA-IDD receiver is to estimate m̂
by computing LLRs and performing a decision. In general the LLRs
are defined as follows

L(ck,i) = ln

(
P (ck,i = 0|zk[t])

P (ck,i = 1|zk[t])

)
, (3)

where zk[t] is the received signal and ck,i ∈ {0, 1}. Using Bayes’
theorem, equation (3) is rewritten as

L(ck,i) = ln

(
p (zk[t]|ck,i = 0)

p (zk[t]|ck,i = 1)

)
+ ln

(
P (ck,i = 0)

P (ck,i = 1)

)
= Le (ck,i) + La (ck,i) , (4)

where Le (ck,i) and La (ck,i) denote the extrinsic and a priori infor-
mation functions respectively.

3.1. Extrinsic Information Computation

In this section, three methods for computing Le(ck,i) are presented.
The first method computes the extrinsic information based on the
true PDF of the received signal, while the second relies on a nonlin-
ear Gaussian approximation of the original PDF. The third approach
calculates Le(ck,i) by relying on a linear model. As shown in equa-
tion (4), the Le(ck,i) is defined as

Le (ck,i) = ln

(
p (zk[t]|ck,i = 0)

p (zk[t]|ck,i = 1)

)
. (5)

Using the law of total probability equation (5) can be expanded as

Le (ck,i) = ln


∑
s∈S0

p (zk[t]|s)P (s|rk,t,υ = 0)∑
s∈S1

p (zk[t]|s)P (s|rk,t,υ = 1)

 , (6)

with index υ = i− (t− 1)M ∈ {1, . . . ,M}. The sets S0 and S1

represent all possible constellation points where the υ-th bit of rk,t
is 0 or 1, respectively. For a given s ∈ Sg , g ∈ {0, 1}, ifM−1(s) =
[a1, . . . , aυ = g, . . . , aM ], the probability P (s|rk,t,υ = g) reads as

P (s|rk,t,υ = g) =

M∏
l=1
l 6=υ

e−2(al− 1
2 )La(rk,t,l)

1 + e−2(al− 1
2 )La(rk,t,l)

, (7)

where La (rk,t,l) = La
(
ck,l+(t−1)M

)
. Note that for computing

Le(ck,i), the channel law p (zk[t]|s), for all s ∈ S, and the a priori
information function La (ck,i), for i = 1, . . . , Nb

R
, are required.

3.1.1. Discrete Precoding Aware Soft Detector

In this subsection, we introduce the DPA Soft Detector as a method
for computing Le(ck,i), which can be considered as the soft MAP
detector. First, the received signal zk[t] is rewritten in a stacked vec-
tor notation zr[t] = [Re {zk[t]} Im {zk[t]}]T , where, for simplicity,
the index k is suppressed. The distribution p (zk[t]|s) is given by

p (zk[t]|s) =
∑

s′∈SK−1

p
(
zk[t]|s, s′

)
P (s′) (8)

=

(
1

αs

)K−1
1

πσ2
w

∑
s′∈SK−1

e
−
||zr [t]−E{zr [t]|s,s′}||2

2
σ2w ,

where s′ = [s′1, . . . , s
′
k−1, s

′
k+1, . . . , s

′
K ]
T corresponds to the sym-

bols of the other users. For a given s and s′ the expected value of
the receive signal is given by

µzr|s = E
{
zr[t]|s, s′

}
= [Re

{
hkx

(
s, s′

)}
Im
{
hkx

(
s, s′

)}
]T .

With this, Le(ck,i) can be computed by inserting (8) into (6). The
resulting expression, finally, reads as

Le(ck,i) = ln


∑
s∈S0

∑
s′∈SK−1

e
−
||zr [t]−µzr|s||

2

2
σ2w P (s|rk,t,υ = 0)

∑
s∈S1

∑
s′∈SK−1

e
−
||zr [t]−µzr|s||

2

2
σ2w P (s|rk,t,υ = 1)

 .

(9)

Note that, for using (9), p (zk[t]|s, s′) is evaluated for all members
of SK−1. Hence, computing (9) can lead to a prohibitive computa-
tional complexity at the receiver side for systems with many users.



3.1.2. Gaussian Discrete Precoding Aware Soft Detector

To reduce the computational complexity we introduce the Gaussian
Discrete Precoding Aware (GDPA) Soft Detector. The basic assump-
tion is that the vector zr[t] can be described as a Gaussian random
vector, meaning

p̃ (zk[t]|s) =
e−

1
2

[
(zr [t]−µ̃zr|s)

T
C−1
zr|s(zr [t]−µ̃zr|s)

]
2π
√

det
(
Czr|s

) . (10)

In the following the computation of µ̃zr|s and Czr|s is detailed.
Since E {Re {a}} = Re {E {a}}, and E {Im {a}} = Im {E {a}},
we compute first the expected value of the complex received signal,
which reads as

E {zk[t]|s} = E {hkx[t] |s} . (11)

In order to simplify the notation we introduce the variable ζ(s) =
hk x (s). The mean vector µ̃zr|s is, then, given by

µ̃zr|s =
[
E {Re {ζ (s)} |s} E {Im {ζ (s)} |s}

]T
, (12)

where

E {Re {ζ (s)} |s} =

(
1

αs

)K−1 ∑
s∈D

Re {ζ (s)}, (13)

E {Im {ζ (s)} |s} =

(
1

αs

)K−1 ∑
s∈D

Im {ζ (s)} (14)

and D is the set of all possible s[t] whose k-th entry is s. Moreover,
the corresponding covariance matrix is given by

Czr|s =

[
σ2
r|s ρri|s

ρri|s σ2
i|s

]
. (15)

The entries ofCzr|s read as

σ2
r|s =

σ2
w

2
+ E

{
Re {ζ (s)}2 |s

}
− E {Re {ζ (s)} |s}2 , (16)

σ2
i|s =

σ2
w

2
+ E

{
Im {ζ (s)}2 |s

}
− E {Im {ζ (s)} |s}2 , (17)

ρri|s = E{Re{ζ (s)}Im{ζ (s) |s}}−
E{Re{ζ (s)}|s}E{Im {ζ (s)} |s}, (18)

where

E
{

Re {ζ (s)}2 |s
}

=

(
1

αs

)K−1 ∑
s∈D

Re {ζ (s)}2,

E
{

Im {ζ (s)}2 |s
}

=

(
1

αs

)K−1 ∑
s∈D

Im {ζ (s)}2,

E {Re {ζ (s)} Im {ζ (s)} |s} =
1

αK−1
s

∑
s∈D

Re {ζ (s)} Im {ζ (s)}

and E {Re {ζ (s)} |s} and E {Im {ζ (s)} |s} are defined in equations
(13) and (14), respectively. Based on Czr|s and µ̃zr|s, Le(ck,i) is
computed as

Le(ck,i) = ln


∑
s∈S0

eΨs√
det
(
Czr|s

)P (s|rk,t,υ = 0)

∑
s∈S1

eΨs√
det
(
Czr|s

)P (s|rk,t,υ = 1)

 , (19)

where

Ψs = −1

2

[(
zr[t]− µ̃zr|s

)T
C−1
zr|s

(
zr[t]− µ̃zr|s

)]
(20)

and P (s|rk,t,υ = g) for g ∈ {0, 1} can be computed with equation
(7) considering La(ck,i) for i = 1, . . . , Nb

R
.

Note that, when calculating Le(ck,i) using (19), p̃(zk[t]|s) is
evaluated only αs times. This results in a significant decrease in
computational complexity, when compared with the approach pro-
posed in (9). However, for computing (19), the receiver requires
access toCzr|s and µ̃zr|s for all values of s. These parameters need
to be provided by the BS which causes communication overhead. In
this context, an alternative method that requires a fewer number of
parameters to be transmitted is desired.

3.1.3. Linear Model Based Discrete Precoding Aware Soft Detector

In this subsection, a method for computing Le(ck,i) with a reduced
number of model parameters is devised. This proposed approach
relies on the description of the received signal by a linear model.

3.1.3.1. Discrete Precoding Aware Linear Model

The Discrete Precoding Aware Linear Model (DPA-LM) is based on
the assumption that the received signal can be expressed by

zk[t] = heff
k sk[t] + wk[t] + εk[t], (21)

where heff
k ∈ C is a factor that expresses the precoder and channel

effects on the transmit symbol of the k-th user and εk[t] is the error
term that denotes the difference between zk[t] and heff

k sk[t] +wk[t].
To identify an appropriate heff

k we consider the following MSE
optimization problem

heff
k = arg minλ2

εk = arg min E
{
|εk[t]|2

}
= arg min

γ∈C
E
{
|hk x[t]− γ sk[t]|2

}
, (22)

where the optimal solution is given by

heff
k =

1

αKs σ2
s

∑
s∈SK

s∗k(s) ζ(s), λ2
εk = hk Λx h

H
k −

∣∣∣heff
k

∣∣∣2 σ2
s ,

with Λx =
(

1
αs

)K ∑
s∈SK

x (s)x (s)H and sk (s) being the k-th

element of s.

3.1.3.2. DPA-LM Soft Detector

This subsection proposes the DPA-LM Soft Detector as a method
for computing the extrinsic information based on the linear model
previously presented. The strategy relies on the assumption that the
error term εk[t] is a circular symmetric complex Gaussian random
variable. The expected value of the received signal is calculated as

E {zk[t]|s} = heff
k s+ E {εk[t]|s} , (23)

and assuming E {εk[t]|s} = 0 ∀ s ∈ S yields

µeff
zr|s =

[
Re
{
heff
k s
}

Im
{
heff
k s
}]T

. (24)



Considering that Ceff
zr =

σ2
effk
2
I with σ2

effk = λ2
εk + σ2

w being the
effective noise variance, the extrinsic information function from (6)
simplifies to

Le (ck,i) = ln


∑
s∈S0

e
−
|zk[t]−heff

k s|2
σ2effk P (s|rk,t,υ = 0)

∑
s∈S1

e
−
|zk[t]−heff

k s|2
σ2effk P (s|rk,t,υ = 1)


, (25)

where P (s|rk,t,υ = g), for g ∈ {0, 1} is computed via equation (7).
The computation of Le(ck,i) according to (25) only requires

knowledge about the parameters heff
k and σ2

effk , which are indepen-
dent of the data symbol s. In comparison with the method from sub-
section 3.1.2, the number of parameters that need to be transmitted
in advance to the information data is significantly reduced.

3.2. DPA-IDD Scheme

Subsections 3.1.1, 3.1.2 and 3.1.3.2 expose different methods for
computing Le(ck,i) when La(ck,i) is known. Using these results,
the DPA-IDD scheme is presented as a way of computing L(ck,i)
via making an iterative estimation of La(ck,i) and, consequently,
Le(ck,i). For description of the DPA-IDD scheme, we define L =
[L(ck,1) . . . L(c

k,
Nb
R

)], Le = [Le(ck,1) . . . Le(c
k,
Nb
R

)] and La =

[La(ck,1) . . . La(c
k,
Nb
R

)].

The principle of the proposed receiver is based on equation (4).
Based on L and Le, the a priori information is extracted via La =
L − Le. With this, for initialization, the detector calculates Le as-
suming La = 0 and forwards it to the decoder. The decoder outputs
the LLR vectorL. UsingL andLe, the a priori information is calcu-
lated and fed back into the detector which will, then, recompute Le
based on the updated La. This process is done recursively until the
maximum number of iterations is reached. An illustration of the re-
ceiving process is shown in Fig. 2. The DPA-IDD technique does not

Decoder
zk[t] L

L

Soft Output
Detector

La

Le m̂k

-

Fig. 2: DPA-IDD Receiver Topology

require a specific method for computing Le. Hence, the approaches
presented in subsections 3.1.1, 3.1.2 and 3.1.3.2 are compatible with
the framework and can be used for calculating Le.

4. NUMERICAL RESULTS

In this section, the proposed soft detection schemes are evaluated
considering as the MMSE branch-and-bound approach from [19] as
the precoding technique. The shown results were computed using an
LDPC block code with a block size of Nb

R
= 486 bits and code rate

R = 1/2. The LLRs are processed by sum-product algorithm (SPA)
decoders [21]. The examined system has K = 2 users and B = 6
BS antennas where the data symbols are considered as 8-PSK and
the precoded symbols are considered as QPSK, meaning αs = 8
and αx = 4. We evaluate the soft detection methods in conjunction

with the proposed DPA-IDD scheme. In such circumstances, the
proposed soft detectors are compared with the conventional AWGN
detector design, described by

Le (ck,i) = ln


∑
s∈S0

e
−|zk[t]−s|2

σ2w P (s|rk,t,υ = 0)

∑
s∈S1

e
−|zk[t]−s|2

σ2w P (s|rk,t,υ = 1)

 , (26)

which is analog to as considered in [20] in the context of convolu-
tional codes with a BCJR decoder. The examined approaches are 1.
Uncoded transmission; 2. Coded transmission using the DPA soft
detector (9); 3. Coded transmission using the GDPA soft detector
(19); 4. Coded transmission using DPA-LM soft detector (25); 5.
Coded transmission using AWGN method (26).
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Fig. 3: Coded BER versus SNR, K = 2, M = 6, αs = 8, αx = 4

As can be seen in Fig. 3, all proposed methods provide similar
performance for low-SNR. As expected, for the high-SNR regime
the proposed DPA-IDD method, that relies on the true PDF of the
received signal, yields a lower BER as compared with the proposed
suboptimal methods. Furthermore, considering the marginal per-
formance loss referring to the proposed DPA-IDD method, shown
in Fig. 3, reasonable complexity performance trade-offs can be
achieved via using the proposed suboptimal methods.

The BER performance associated with the system that uses
the common AWGN soft detector is similar to the proposed meth-
ods for low-SNR. However, in the medium and high-SNR regime,
the distortion brought by the discrete precoding becomes relevant,
and, since this is not considered in the common AWGN receive
processing it results in an error floor in the BER, as shown in Fig. 3.

Finally, Fig. 3 shows an improvement in performance when us-
ing the iterative method. With a relatively small number of iterations
there is a gain of approximately 1.5 dB when compared with the non
iterative approach.

5. CONCLUSIONS

This study proposes three soft detection approaches which calculate
extrinsic information values that are used for computing the LLRs
via the DPA-IDD scheme. Numerical results show that employing
the common LLR computation method for AWGN channels with-
out taking into account the effects of the discrete precoder causes an
error floor in the systems’ BER for high-SNR. By relying on more
sophisticated LLR computation methods, the proposed approaches
mitigate this problem while also enhancing the overall BER perfor-
mance of the system.
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