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Abstract—In this work, we focus on Slepian-Wolf (SW)
coding in the short blocklength for reconciliation in secret key
generation and physical unclonable functions (PUF). In the
problem formulation, two legitimate parties wish to generate
a common secret key from a noisy observation of a common
random source in the presence of a passive eavesdropper. We
consider three different families of codes for key reconcil-
iation. All the selected codes show promising performances
in information transmission in the short blocklength regime.
We implement and compare the performance of the codes
for SW reconciliation in the terms of reliability and decoding
complexity for different blocklengths.

I. INTRODUCTION

Wireless communication technologies have become an
essential part of our everyday lives. As more and more data
are being transmitted over wireless channels, besides the
reliability of the transmitted information, guaranteeing the
security of information transferred has become a challenging
issue. Physical layer security (PLS) has been investigated
in the recent years to provide the security in information
exchanged information by exploiting the properties of the
physical layer [1]–[3].

In the context of PLS, in this paper we consider the
problem of coding for secret key generation (SKG) from a
common source of randomness observed by two communica-
tion parties1. In the problem formulation, the observation of
two legitimate parties, who wish agree on a common secret
key, differ due to noise or other factors. The central idea
of reconciliation coding for SKG is that the parties should
be able to correct the mismatches, by sending some helper
data trough the public communication channel. Of course,
the helper data can also help an eavesdropper (Eve) to have
a better guess about the respective measurements.

Therefore, in coding for SKG, the target is to design
a coding scheme which requires the minimum amount of
helper data (information leakage), while guaranteeing that
the legitimate parties will be able to reconcile the mismatches
with a high probability (reliability). The coding for key rec-
onciliation is also referred to as Slepian-Wolf (SW) coding
in the literature. Motivated by the increasing importance of
low latency communications in recent years, we focus on the
short blocklength SW coding in this contribution.

1The proposed codes can be further applied in the reconciliation step in
the context of physical unclonable functions [4].

The problem of coding for SW reconciliation has been
studied in the literature for long blocklengths. The SKG
based on polar codes have been studied in [5], [6]. In [7],
[8], Bose Chaudhuri Hocquenghem (BCH) codes are utilized
for SW coding. Also LDPC codes have been proposed and
their performance has been analysed in [9]. However, as
most of the work on coding for SW settings only consider
long blocklengths, respective results for the short blocklength
have not been reported.

In this paper we investigate coding for reconciliation
where the two parties have generated a binary random se-
quence from their observations of a common random source.
As an example, the possible source of random variables
can be the wireless channel state or the challenge-response
of physical unclonable functions (PUF). We implement and
compare the reliability / complexity performance of polar,
LDPC and BCH codes in the short blocklength regime. All
the selected codes show promising performance in informa-
tion transmission in the short blocklength.

The paper is organized as follows. In Section II, we
describe the system model. In Section III, we explain the
details of the codes’ implementations, and in Section IV we
present the numerical results and compare the performance
of the codes investigated. Finally, we conclude the paper in
Section V.

II. SYSTEM MODEL

In our system model, we assume Alice and Bob observe
binary sequences YA, YB of length n by quantizing their
local measurements of a common source of randomness,
represented by XA and XB , respectively. At present, for
the sake of simplicity, we assume that a passive adversary,
referred to as Eve, is unable to obtain any information about
the observed sequences.

We assume that the generated binary sequences are inde-
pendent and identically distributed (i.i.d.) with bits at any
index having equal probabilities of being 0 or 1, i.e.,

Pr (YA[i] = 0) = Pr (YB [i] = 0) = 0.5. (1)

Also the corresponding bits of the sequences YA, YB are
different with probability p

Pr (YA[i] 6= YB [i]) = p, i = 1, . . . , n. (2)



Fig. 1: The system model.

Alice and Bob attempt to agree on a secret key K of length
k that must be drawn uniformly from a length n binary tuple
K = {0, 1}k. To this end, Alice sends her syndrome S, of
length n− k, through a public channel in order to help Bob
to obtain an estimate ŶA of her sequence YA. Additionally,
Bob and Eve can listen to the public channel without error.

The code rate is defined as R = k
n and the frame

error rate (FER) is defined as the probability that Bob’s
estimation of YA is erroneous Pr(YA 6= ŶA). In this set-
up, Bob first estimates the sequence ŶA and then, Alice
and Bob extract the common key K independently using
privacy amplification. (Fig. 1). Motivated by the promising
performance of LDPC [10], polar [11], and BCH codes
[12] with list decoding in short blocklengths for information
transformation applications, in this paper we implement and
compare against the upper bound on SKG rates in [13], when
these three families of SW decoders are employed.

III. CODES IMPLEMENTATION

A. LDPC codes with ordered statistic decoding

LDPC codes are powerful error correcting codes that can
approach the Shannon limit at very large blocklengths. They
exhibit promising performance for a variety of communica-
tion channels [14]–[16]. However, in general, they do not
work well in short blocklengths. To address such shortcom-
ings, LDPC codes enhanced with ordered statistic decoding
(OSD) is one of the techniques proposed to achieve near
maximum likelihood (ML) efficiency for short blocklengths
[10]. The main concept behind OSD is that we start by
selecting the k̃ most reliable independent positions, where k̃
is the code rank. Afterwards, we make hard decisions on the
value of the selected bits, based on the log-likelihood ratios
(LLR). Then, by flipping the values of up to t bits among
them, we produce a candidate list of codewords. Finally,
we choose the most likely codeword by performing an ML
search in the list [17]. The size of the candidate OSD list
increases with respect to t as

∑t
i=0

(
k
i

)
.

In our implementation, Alice sends her syndrome S =
YAH

t, where Ht is the transpose of the parity check matrix.
At the receiver side, Bob first feeds YB and S to the sum-
product (SP) algorithm to generate soft information of the
bits (i.e., the LLRs). Then the LLRs are passed to the

Fig. 2: Decoder structure for LDPC codes with ordered
statistics decoding.

OSD block to estimate ŶA (Fig. 2). In the iterative version
of LDPC code with OSD, to enlarge the candidate list of
codewords, the LLRs after each iteration of SP algorithm
are passed to OSD, and at the end the OSD block pick
the most likely codeword. The size of the candidate list of
codewords in iterative scheme is at most itr times larger than
the non-iterative scheme, where the itr denotes the number
of iterations of the SP algorithm.

B. Polar codes with list decoding

Polar codes are linear block error correcting codes that
can provably achieve the capacity of a binary-input discrete
memoryless channel as the code length goes to infinity.
Using successive cancellation list decoding, which holds a
list of most likely decoding paths, can significantly improve
the performance of polar codes in finite blocklengths. The
cyclic redundancy check (CRC) will boost the performance
of list decoding even further. The CRC aids the decoder in
selecting the correct decoding route from a list of options,
even if it is not the most likely one. [11].

In our implementation (similar to [18]), Alice encodes her
sequence YA as U = YAGn, where Gn =

(
1 0
1 1

)⊗n
is the

encoder matrix as defined in [18]. Alice sends the syndrome
S which contains S1 and CRC bits with length l. S1 has
length n − k − l and contains high-entropy bits of U as
follows

H(U [i]|YA, U
i−1) ≥ H(U [j]|YA, U

j−1), 1 ≤ i, j ≤ n,
(3)

where i is the position of transmitted bits and H(·) denotes
entropy. Therefore, the actual rate of the polar code is R =
k+l
n . On the other side, Bob applies CRC-aided successive

cancellation list decoding to estimate ŶA. In the list decoding
scheme, Bob tracks L decoding paths simultaneously, where
L is the list size. Finally, the decoder picks the most likely
codeword which also satisfies the CRC condition among the
L paths (Fig. 3). Note that the complexity of list decoding
polar coding grows linearly with the list size.

C. BCH codes with list decoding

BCH codes are a class of cyclic error-correcting codes
constructed by polynomials over a finite field. One of the
main features of BCH codes during code design is the num-
ber of guaranteed correctable error bits. A binary BCH code



Fig. 3: Decoder structure for polar codes with list decoding.

Fig. 4: Decoder structure for BCH codes with list decoding.

is defined by (nBCH , kBCH , tBCH), where nBCH = 2w−1
is the blocklength, kBCH is the message length, and tBCH

represents the number of guaranteed correctable error bits.
To improve their error correcting capability, BCH codes can
be armed with list decoding.

In our implementation of list decoding, Alice calculates
the syndromes as S = YAH

t, where H is the parity check
matrix of the BCH code, and transmits it through the public
channel. On the other side, Bob, first generates a candidate
list by flipping up to t bits of the measured sequence YB .
After feeding the candidate list to the BCH decoder, the BCH
decoder finds a possible solution for each element of the
candidate list and picks the solution which is the most likely
codeword with respect to the measured sequence YB (Fig.
4). In this implementation of list decoding, the size of the list
increases with respect to t as

∑t
i=0

(
n
i

)
. To reduce the size

of list, without a significant degrade in the performance of
decoder some heuristic methods exist in the literature [19].

IV. NUMERICAL RESULTS

In this section, we provide the FER performance of the
aforementioned codes in the SKG setting for 128 and 512
bits. We also compare the FER performance of codes with
the information theoretical finite length upper bound reported
in [13], which translates to a lower bound in the FER.

For the first instance, we consider blocklength 128 bits.
We implement a (n, k) = (128, 75) polar code with 11 bits
CRC and a (127, 64, 10) BCH code. Also, we pick regular
(3, 6) LDPC codes with length 128 bits2. The maximum
number of iterations for SP algorithm is set to 50. In Fig.
5, the FER performances of half rate codes with 128 bits
blocklength are depicted (i.e., the key length after privacy
amplification is 64) and compared to the upper bound

2We note that, the variable and check nodes degree distributions can be
optimized to improve the performance of LDPC codes [20], however the
degree optimization of the LDPC codes is out of the scope of this work.

reported in [13]. Note that the upper bound becomes inac-
curate for short blocklength while their accuracy improves
as the blocklength increases. That is the reason we observe
comparatively a large gap between the upper bound and the
codes’ FER performances for n = 128 [6].

As it is depicted in Fig. 5, the polar code with list
size 128, second order BCH list decoding code, and LDPC
iterative list decoding for t = 2 outperform and show almost
similar performance at FER 10−3. Moreover, The results
show that, while traditional polar codes perform poorly in
short blocklengths, their performance can be significantly
improved by equipping them with list decoding. For ex-
ample, the polar code with list size 128, provides around
two orders lower FER compared to the classical polar code
at H(YA[i]|YB [i]) = 0.1944. However, this improvement
comes at the cost of 128 times more decoding complexity.
We also observe that LDPC iterative list decoding outper-
forms the non-iterative one. Furthermore, list decoding also
improves the performance of the BCH and LDPC codes, but
the improvement with respect to the additional complexity
is not as notable as in the case of the polar code.

Furthermore, to generate keys that can be used with
standard block ciphers, e.g., AES-128 or AES-256, the SKG
process is assumed to run with blocklength 512 and rate half.
As it is demonstrated in Fig. 6, we observe a significant
improvement in the performance of polar codes by using
list decoding. On the other hand, we do not observe a
noticeable improvement by using list decoding size t = 1
for LDPC and BCH code for this blocklength. We conclude
this observations as the strength of list decoding with a fixed
size as the blocklength increases, diminishes. We do not
generate higher list decoding order for LDPC and BCH codes
due to their high decoding complexity. Also, at blocklength
n = 512, the gap between the FER of the polar code with list
size 128 and the lower bound is less than the case n = 128.
We posit that one of the reasons is that the lower bound at
this length is tighter than the first instance.

In the simulations for short blocklength, we observe that
although the considered implementation of list decoding for
LDPC and BCH codes improves the performance of the code
in short blocklength (∼100 bits). However, the improvement
diminishes as we increase the blocklength, and to obtain
enhancement in larger blocklength, we need to increase the
order of the list decoding, which adds the complexity of
decoders significantly. For these schemes utilizing heuristic
methods, to modify the list size, can effectively reduce the
complexity. On the other hand, we observe that polar codes
with list decoding provide a significant improvement for
medium size blocklength as well as short blocklength.

V. CONCLUSION

In this paper, we consider coding for Slepian-Wolf key
reconciliation in the short blocklength regime. We assume
that two legitimate parties observe binary sequences, gener-
ated from measurements of a common random source. We
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Fig. 5: Comparison of FER performance of codes with the lower bound in [13] for n = 128.
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Fig. 6: Comparison of FER performance of codes with the lower bound in [13] for n = 512.

implement three different families of codes, including LDPC
codes, BCH codes, and Polar codes to detect and correct the
mismatches in the noisy observations. Our simulations for
blocklengths of n = 128 and n = 512 bits, considering both
reliability and decoding complexity, demonstrate that polar
codes with a list size of 128 outperforms all other codes.
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