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ABSTRACT

The considered low-resolution MIMO receiver implies that the
received signals simultaneously are processed by the 1-bit ADCs
and the comparator network, where the latter is composed of sev-
eral simple comparators with binary outputs. In this study, we pro-
pose a low-resolution aware linear minimum mean-squared error
(LRA-LMMSE) channel estimator for such low-resolution MIMO
receivers. By employing the proposed channel estimator and its cor-
responding estimation error, we build up a lower bound on the er-
godic sum rate for the low-resolution aware linear MMSE receiver.
Simulation results on the channel estimation match the analytical
MSE calculations and it is shown that by taking into account the ad-
ditional comparator network, the proposed system outperforms the
conventional 1-bit MIMO system. Moreover, numerical simulations
confirm an advantage in terms of sum rate for the proposed system.

Index Terms— MIMO, 1-bit ADCs, comparator networks,
Bussgang theorem, channel estimation, achievable rate

1. INTRODUCTION

An important solution for future cellular networks that scale up
in speed and bandwidth is the use of wireless systems with low-
precision analog-to-digital converters (ADCs) at the receiver. The
power consumption of the ADCs grows exponentially with the num-
ber of quantization bits as described in [1]. Therefore, one way
to approach a receiver design with low energy consumption is the
utilization of 1-bit quantization, which is also favorable in terms of
hardware complexity.

Many works have studied large-scale MIMO systems with low
resolution ADCs at the front-end. However, the channel estimation
is a problem that currently limits the performance of such systems.
In this context, the least squares (LS) estimator has been developed
in [2]. While a more sophisticated channel estimator is given by
the near maximum-likelihood (nML) estimator devised in [3]. An-
other promising channel estimator is given by the Bussgang Linear
Minimum Mean Squared Error (BLMMSE) channel estimator pre-
sented in [4], where the authors also derive lower bounds on the
theoretical achievable rate for maximum ratio combiner (MRC) and
zero-forcing (ZF) receivers.

For signal detection with low-resolution ADCs, different strate-
gies exist in literature, for example iterative detection and decoding
(IDD) [5] and sphere decoding [6].

A common used technique in order to mitigate the performance
loss caused by the coarse quantization is oversampling. In this re-
gard, the studies in [7–9] considered temporal oversampling at the
receiver to achieve better estimation and detection performance.

Another technique to mitigate the performance loss caused by
the coarse quantization is given by the utilization of an additional
comparator network as presented in [10]. The present paper pro-
vides an extension of the study in [10] by devising a linear chan-
nel estimation scheme and computing a lower bound on the associ-
ated sum rates. Expressions for the low-resolution aware (LRA) lin-
ear minimum mean-square-error (LMMSE) channel estimator and
the mean-squared error (MSE) of the channel estimate were devel-
oped based on the Bussgang decomposition [11], similarly as done
in [4, 8]. Numerical results confirm that the consideration of the
comparator network is benefficial for channel estimation in terms of
MSE. By considering the proposed channel estimator in conjunc-
tion with the LRA-MMSE receiver presented in [10], we devise a
lower bound on the ergodic sum rate. Numerical results confirm that
adding a comparator network to the system increases the sum rate
significantly.

The rest of this paper is organized as follows: Section 2 shows
the system model and describes the insight of the comparator net-
work. Section 3 derives the linear channel estimator for the pro-
posed system. The lower bound on the sum rate is given in Section
4. In Section 5, the numerical results are presented and Section 6
concludes the study.

Throughout the paper the following notations are used: the bold
upper and lower case such as A and a denote matrices and vectors,
respectively. In is a n × n identity matrix. The vector or matrix
transpose is represented by (·)T . Additionally, diag(A) is a diago-
nal matrix only containing the diagonal elements of A. The inverse
of sine function is denoted by sin−1(·). Moreover, vec(A) is the
vectorized form of A obtained by stacking its columns, while the
inverse of this operation is unvec(A). Finally, ⊗ is the Kronecker
product.

2. SYSTEM MODEL

The overall system model is illustrated with blocks in Fig. 1, where
the received signal y for the uplink single-cell MIMO system with
Nt single-antenna users and Nr receive antennas is written as

y = Hx + n. (1)

The vector x contains complex transmit symbols of the Nt users
which have unit power normalization, H ∈ CNr×Nt is the channel
matrix and n ∈ CNr×1 is the noise vector where each element has
a variance σ2

n. Using the transformation from a complex into a real-
valued system, we obtain[

R{y}
I{y}

]
=

[
R{H} −I{H}
I{H} R{H}

] [
R{x}
I{x}

]
+

[
R{n}
I{n}

]
, (2)
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Fig. 1: System model of multi-user MIMO with 1-bit ADCs and an additional comparator network

where R{·} and I{·} denote the real and imaginary parts, respec-
tively. A more compact notation for equation (2) reads as

yR = HRxR + nR. (3)

The received signal is then forwarded to the 1-bit ADCs and the
comparator network (shown in Fig. 2). Each comparator compares
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Fig. 2: Insight of the comparator network

two received signals and quantizes the difference as
{
± 1√

2

}
. Let-

tingQ(·) represent the 1-bit quantization, the input of the detector is
described by

zQ = Q
([

yR

B′yR

])
= Q

([
I2Nr

B′

]
yR

)
, (4)

where B′ ∈ Rα×2Nr refers to the comparator network and has the
form

B′ =
[
B′R B′I

]
=


1 −1 0 0 · · · 0
−1 0 1 0 · · · 0
0 0 0 −1 · · · 1
...

...
...

...
...

...
0 1 0 0 · · · −1

 . (5)

In each row of B′, there is only one pair of 1 and -1 and the remain-
ing entries are zeros. With B =

[
I2Nr ;B

′], (4) reads as

zQ = Q(zR) = Q (ByR) . (6)

The novelty of the present study is that 1-bit samples and the com-
parator output signals, described by Q(B′yR), are jointly used for
the receive processing, like channel estimation.

3. CHANNEL ESTIMATION

In a practical system, the channel state information (CSI) is esti-
mated at the base station (BS) and this knowledge is used to detect
the data symbols transmitted by the Nt users. Each transmission
block is divided into two sub-blocks: one dedicated to the pilot sym-
bols and the other to the data symbols. The part containing the pi-
lots can be either located at the beginning of each block or spread
according to a desired pattern. During the training phase, each ter-
minal simultaneously transmits sequences of τ pilot symbols to the
BS, which yields

Yp = HΦT + Np (7)

where Yp ∈ CNr×τ is the matrix containing the unquantized re-
ceived signal, Φ ∈ Cτ×Nt is the matrix of pilot symbols and Np is
the noise matrix. Vectorizing the received signal yields

vec(Yp) = yp = Φ̃h + np (8)

where Φ̃ = (Φ⊗ INr ), h = vec(H) and np = vec(Np). However,
due to the addition of the comparator network, we need to work with
a real-valued representation of the system. In this case, the received
signal yRp is defined by

yRp =

[
R{Φ̃} −I{Φ̃}
I{Φ̃} R{Φ̃}

] [
R{h}
I{h}

]
+

[
R{np}
I{np}

]
= Φ̃RhR + nRp

(9)

where yRp ∈ Rτ(2Nr)×1 is the real-valued received signal vector.
Then, when we multiply equation (9) with an effective comparator
network matrix Beff, we get

zRp = BeffyRp = BeffΦ̃RhR + BeffnRp , (10)

where Beff ∈ Rτ(2Nr+α)×τ(2Nr) is described by

Beff =

[
Iτ(2Nr)

B′eff

]
=

[
Iτ(2Nr)[

B′eff, R B′eff, I
]] , (11)

where B′eff, R = (B′R ⊗ Iτ ) and B′eff, I = (B′I ⊗ Iτ ), with B′R and B′I
denoting respectively the parts of the matrix B′ which are associated
to the real and imaginary parts of the received signal as shown in (5).



After being processed by the comparators, the quantized signal can
be expressed as

zQp = Q(zRp) = Φ̂RhR + ñRp , (12)

where the right hand side corresponds to a linear model that relies
on the Bussgang decomposition approach. In this context, the linear
model involves the matrix Φ̂R = ApBeffΦ̃R and the effective noise
vector ñRp = ApBeffnRp + nq,p, with Ap being a well chosen
square matrix and nq,p being the quantization noise. The Bussgang-
based linear operator is chosen independently from zRp , in order to
minimize the power of the quantization noise as in [12], and is given
by

Ap = CH
zRpzQp

C−1
zRp

=

√
2

π
K, with K = diag(CzRp

)−
1
2 ,

(13)
where CzRpzQp

denotes the cross-correlation matrix between the re-
ceived signal zRp and its quantized signal zQp

CzRpzQp
=

√
2

π
KCzRp

(14)

and CzRp
= E{zRpzTRp

} denotes the auto-correlation matrix of zRp

CzRp
= BeffΦ̃RRhΦ̃T

R BT
eff + BeffCnRp

BT
eff, (15)

where Rh = E{hRhTR } and CnRp
= E{nRpnTRp

} = σ2
n
2

Iτ(2Nr).

3.1. LRA-LMMSE Channel Estimator

Based on the statistically equivalent linear model in (12), the LRA-
LMMSE optimal filter can be obtained through the optimization
problem formulated as

WLMMSE = argmin
W

E
[∣∣∣∣hR −WzQp

∣∣∣∣2
2

]
= RhΦ̂T

R C−1
zQp

,
(16)

where the auto-correlation of the quantized signal is calculated as
[13]

CzQp
=

2

π
sin−1

(
KR{CzRp

}K
)
. (17)

The resulting LRA-LMMSE channel estimator corresponds to the
linear operation

ĥLRA-LMMSE = WLMMSEzQp = RhΦ̂T
R C−1

zQp
zQp (18)

3.2. Mean-Squared Error of the Channel Estimate

The mean-squared error (MSE) of the LRA-LMMSE channel esti-
mate can be expressed as

MLRA-MMSE = E

[∣∣∣∣∣∣ĥLRA-MMSE − hR

∣∣∣∣∣∣2
2

]
= tr

(
Rh −RhΦ̂T

R C−1
zQp

Φ̂RRh

)
,

(19)

where it is considered that E
[
ñRphTR

]
= 0.

4. SUM RATE ANALYSIS

4.1. Data Transmission with the utilization of LRA-LMMSE
Receiver

It’s considered that in the data transmission stage theNt users simul-
taneously transmit their data symbols represented by the vector xR

to the BS, which is a stacked vector with real and imaginary parts.
In the present study, real and imaginary parts represent independent
data symbols. After processed by the comparators, the quantized
signal can be expressed as

zQd = Q(zRd) = Q(ByRd)

= Q(BHRxR + BnRd)

= AdBHRxR + AdBnRd + nq,d,

(20)

where the same definitions from the previous section apply, but with
the subscript p replaced by d, since we changed from the pilots to
the data transmission stage. Then, the LRA-LMMSE channel es-
timate (18) is used to compute a linear receiver which provides an
estimate of the data symbols transmitted from the Nt users. In this
context, the quantized signal is be separated into 2Nt streams by
multiplying the signal with the receiver filter matrix defined in [10]
as G = C−1

zQd
CzQd

xR , which in this case is computed based on the
estimated channel. Thereby, we obtain

x̂R = GzQd

= GAdB(ĤRxR + ERxR) + GAdBnRd + Gnq,d,
(21)

where ĤR is the estimated channel matrix described by

ĤR =

[
R{Ĥ} −I{Ĥ}
I{Ĥ} R{Ĥ}

]
with Ĥ = unvec(ĥ)

and ĥ =
[
ĥLRA-LMMSE,a + jĥLRA-LMMSE,b

]
,

(22)

where ĥLRA-LMMSE,a corresponds to the first half of ĥLRA-LMMSE and
ĥLRA-LMMSE,b to the second. Finally, ER = HR − ĤR is the channel
estimation error.

Then, the kth element represents an estimate of the signal of the
kth sub-channel, similarly as in [4], with k ∈ [1, 2Nt], which reads

x̂Rk = gkAdBĥRkxRk︸ ︷︷ ︸
desired signal

+gk

K∑
i 6=k

AdBĥRixRi︸ ︷︷ ︸
interference

+ gk

K∑
i=1

AdBεRixRi︸ ︷︷ ︸
channel estimation error

+gkAdBnRd︸ ︷︷ ︸
AWGN noise

+ gknq,d︸ ︷︷ ︸
quant. noise

,

(23)

where gk and ĥRk are the kth columns of the matrices GT and ĤR,
respectively. Moreover, εRi is the ith column of the matrix ER.

4.2. Lower bounding the Sum Rate

Since the Gaussian noise case corresponds to the worst case sce-
nario, we can find a lower bound for the achievable rate by interpret
the quantization noise as Gaussian, with an equivalent noise covari-
ance matrix [12]. In this regard, the equivalent noise covariance ma-
trix is given by

Cnq,d = E
[
(zQd −AdzRd)(zQd −AdzRd)

T
]

= CzQd
−AdCzRd

AT
d ,

(24)



IRk = E

1
2
log2

1 +

∣∣∣dkĥRk

∣∣∣2∑K
i 6=k

∣∣∣dkĥRi

∣∣∣2 +∑K
i=1 |dkεRi |

2 + σ2
n ||dk||22 + 2gkCnq,dgTk


 (25)

where dk = gkAdB.
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Fig. 3: MSE comparisons of LRA-LMMSE channel estimators with and
without comparator network in 2× 4 MIMO systems.

where CzQd
= E

[
zQdzTQd

]
is the auto-correlation matrix of the

quantized data signal, like in (17), and CzRd
= E

[
zRdzTRd

]
=

1
2
BHRHT

R BT +
σ2
n
2

BBT is the auto-correlation matrix of the re-
ceived data signal.

Using this approach, the ergodic achievable rate per sub-channel
is lower bounded by (25), where the expectation operator is taken
with respect to channel realizations and channel estimation realiza-
tions. According to prior literature [12], this method provides an
accurate lower bound especially for the low SNR regime. Finally,
the sum rate is lower-bounded by

∑K
k=1 IRk .

5. NUMERICAL RESULTS

In this section, an uplink single-cell 1-bit MIMO system with Nt =
2 and Nr = 4 is considered. The pilot sequences are column-wise
orthogonal with length τ = Nt, i.e., ΦTΦ = τINt . The SNR is
defined as 10 log( 1

σ2
n
), which is the average receive SNR per user

per antenna. The MSE performance plots are obtained by taking the
average of 4000 different channels and 4000 noise realizations per
channel.

The MSE comparison between the LRA-LMMSE channel esti-
mators with fully and partially connected comparator networks are
shown in Fig. 3, where partially connected refers to comparator net-
works of 2Nr comparators with input signals from each two ran-
dom antennas in terms of real or imaginary parts. The case of fully
connected networks refers to comparator networks where all possi-
ble combinations are considered. The lines labeled with “Analytical
Result” are obtained with (19) while the marks labeled with “Nu-
merical Result” are obtained with the MSE of the simulated channel
estimator in (18). The presented numerical and analytical results are
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Fig. 4: Sum Rate comparisons of LRA-LMMSE channel estimators with and
without comparator network in 2× 4 MIMO systems.

aligned, which confirms the accuracy of the proposed model. As ex-
pected, the system with the fully connected method achieves the best
MSE performance. However, it can be seen that the approach with
the comparator network using random selected inputs is also benefi-
cial in terms of MSE in comparison to the case without comparator
network.

In the second experiment, we compare the lower bound of the
ergodic sum rate with and without a random selected comparator
network with 2Nr comparators. The sum rate versus SNR is shown
in Fig. 4, which indicates a significant benefit for the system that
utilizes the additional comparator network. Note that the increased
sum rate is not only due to a more accurate channel estimation but
also due to the comparator network aided receive processing.

6. CONCLUSIONS

In this study, the LRA-LMMSE channel estimator and correspond-
ing sum rates for the comparator network aided 1-bit MIMO systems
are proposed. The numerical simulations match with the correspond-
ing analytical channel estimation performance in terms of the MSE.
By considering that the base station employs a linear receiver and us-
ing the proposed channel estimate and the corresponding estimation
error, we have derived an expression for lower bounding the ergodic
sum rate. Simulation results show that the proposed comparator net-
work based system outperforms the conventional 1-bit receiver in
terms of channel estimation and sum rates.
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