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ABSTRACT
Continuous phase modulation (CPM) with 1-bit quantization at the
receiver is promising in terms of energy and spectral efficiency.
This study proposes a mean square error (MSE) based strategy for
selecting the sampling time instances of an oversampled and 1-bit
quantized CPM signal. The adaptive sampling scheme is especially
suitable for signals with smooth phase transitions such as given by
CPM signals based on the raised cosine frequency pulse. Numerical
results show that receive processing with the proposed sampling
strategy outperforms the conventional receive method based on
uniform sampling, while corresponding to a lower computational
complexity.

Index Terms— 1-bit quantization, oversampling, continuous
phase modulation, adaptive sampling.

1. INTRODUCTION

Continuous phase modulation (CPM) yields spectral efficiency,
smooth phase transitions and a constant envelope [1, 2], which
allows for the use of energy efficient power amplifiers with low
dynamic range. At the receiver side, the energy consumption of the
analog-to-digital converter (ADC) scales exponentially with the res-
olution in amplitude [3]. Hence, in this study a low resolution ADC
is considered, where the ADC provides only sign information about
the received signal. In order to compensate for the loss in terms of
the achievable rate, an adaptive oversampling with respect to the sig-
nal bandwidth is considered. In this context, it is shown that uniform
oversampling yields a significant gain in terms of achievable rate
for the noiseless [4] and for the noisy channel [5]. More recently,
high-rate quantization studied in [6] is associated with an adaptive
sampling analysis explored in [7], which formulates optimal high-
resolution sampling of one-dimensional signals, based on an MSE
criterion. Moreover, non-uniform sampling with 1-bit ADCs in large
scale MIMO systems is studied in [8]. CPM signals with channels
with 1-bit quantization and oversampling has been considered be-
fore in [9], where the achievable rate is studied and maximized via
optimization of sequences. Later, more practical approaches were
proposed in [10], where the intermediate frequency and the wave-
form is considered in a geometrical analysis of the phase transitions.
Moreover, in [11] it is presented how to exploit the channel with 1-
bit quantization and oversampling by using iterative detection with
sophisticated channel coding for CPM signals.

In this study, an MSE-based nonuniform sampling approach is
applied to CPM systems with 1-bit quantization and oversampling
at the receiver. As the information is implicitly conveyed in phase
transitions of CPM signals, resolution in time explored with adaptive
sampling is more promising than resolution of amplitude.

Numerical results confirm that the proposed adaptive sampling
is beneficial in terms of achievable rate and bit error rate (BER)
in comparison to the state-of-the-art methods [9, 10] using uniform
sampling. At the same time the receive processing with the proposed
method correspond to lower or equivalent computational complexity.

The rest of the paper is organized as follows: Section 2 defines
the system model, whereas Section 3 describes the adaptive sam-
pling process. Section 4 discusses numerical results, while Section 5
gives the conclusions.

Sequences of scalars and vectors are denoted by
xn = [x1, . . . , xn]T and yn = [yT1 , . . . ,y

T
n ]T , respectively. A

segment of a sequence is described by xkk−L = [xk−L, . . . , xk]T .

2. SYSTEM MODEL

The considered system model is illustrated in Fig. 1, which is based
on the discrete time system model proposed in [9] for CPM systems
with 1-bit quantization and oversampling at the receiver. A decima-
tion block is replaced by a sample selection strategy with the aim to
represent the considered nonuniform sampling, covered in Section 3.
In the following, the individual building blocks are detailed.

2.1. CPM Signal Decomposition

The information conveying phase term of the constant envelope
CPM signal [1] reads

φ (t) = 2πh

∞∑
k=0

αkf(t− kTs) + ϕ0, (1)

where Ts denotes the symbol duration, h = Kcpm/Pcpm is the mod-
ulation index, f (·) is the phase response, ϕ0 is a phase-offset and
αk represents the kth transmit symbol. For an even modulation order
Mcpm, such transmit symbols are taken from an alphabet described
by αk ∈ {±1,±3, . . . ,±(Mcpm − 1)}. In order to obtain a finite
number of phase states Kcpm and Pcpm must be relative prime posi-
tive integers. The phase response function f (·) shapes the sequence
of CPM symbols to the continuous phase signal with smooth transi-
tions. The phase response is characterized by

f(τ) =

{
0, if τ ≤ 0,
1
2
, if τ > LcpmTs,

where Lcpm is the depth of the memory in terms of transmit sym-
bols. As it is depicted in Fig. 2, the phase response corresponds
to the integration over the frequency pulse gf (·). In general, the
corresponding phase trellis of (1) is time variant, which means that
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Fig. 1: Discrete time description of the CPM system with 1-bit quantization and oversampling at the receiver

the possible phase states are time-dependent. In order to avoid the
time-dependency, a time invariant trellis is constructed by tilting the
phase according to the decomposition approach in [12]. The tilt
corresponds to a frequency offset applied to the CPM signal, i.e.,
the phase term becomes ψ(t) = φ(t) + 2π∆ft, where ∆f =
h(Mcpm−1)/2Ts. By considering the tilted trellis, it is convenient to
use a different symbol notation xk = (αk+Mcpm−1)/2, which cor-
responds to the symbol alphabet X = {0, 1, . . . ,Mcpm − 1}. The
tilted CPM phase ψ(t) within one symbol interval with duration Ts,
letting t = τ + kTs, can be fully described by the state definition
s̃k =

[
βk−Lcpm , x

k
k−Lcpm+1

]
in terms of

ψ(τ + kTs) =
2π

Pcpm
βk−Lcpm

+ 2πh

Lcpm−1∑
l=0

(2xk−l −Mcpm + 1) f(τ + lTs)

+ πh (Mcpm − 1)

(
τ

Ts
+ Lcpm − 1

)
+ ϕ0, (2)

where the absolute phase state βk−Lcpm can be reduced to

βk−Lcpm =

Kcpm

k−Lcpm∑
l=0

xl

 mod Pcpm,

which is related to the 2π-wrapped accumulated phase contributions
of the input symbols that are prior to the CPM memory.

The considered discrete time description of the system model
implies that the CPM phase is represented in a vector notation. The
corresponding tilted CPM phase ψ(τ + kTs) for one symbol in-
terval, i.e., 0 < τ ≤ Ts, is then discretized into MD samples,
which composes the vector denoted byψk(s̃k) = [ψ( Ts

MD
(kMD+

1)), ψ( Ts
MD

(kMD+2)), . . . , ψ(Ts(k+1))]T , whereM is the over-
sampling factor, and D is a higher resolution multiplier. The tilt of
the phase can be established in the actual communication system
by receiving at an intermediate frequency (IF), which motivates the
definition of ψIF(t) = ψ(t) + 2π nIF

Ts
t. With nIFPcpm as an integer

value, different low-IF frequencies can be used by choosing nIF > 0,
which is promising because the appearance of zero-crossings can be
adjusted, as proposed in [10]. Hence, such intermediate frequency is
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Fig. 2: Frequency pulse shapes (right) and their phase responses (left)

expressed with(
∆f +

nIF

Ts

)
=
h(Mcpm − 1)

2Ts
+
nIF

Ts
. (3)

The CPM modulator illustrated in the discrete system model in
Fig. 1, takes the input sequence xn and generates the transmit signal√

Es
Ts
ejψk(s̃k), where Es is the symbol energy, i.e., it already takes

into account the frequency offset.

2.2. Receive filtering and quantization

The receive filter g(t) has an impulse response of length Tg . In the
discrete model for expressing a subsequence of (η + 1) oversam-
pling output symbols it is represented in a matrix form with G, as
a MD(η + 1) × MD(Lg + η + 1) Toepliz matrix, whose first
row is [gT ,0TMD(η+1)], where gT = [g(LgTs), g( Ts

MD
(LgMD −

1)), . . . , g( Ts
MD

)]. A higher sampling grid in the waveform signal,
in the noise generation and in the filtering is adopted to adequately
model the aliasing effect. This receive filtering increases the mem-
ory of the system by Lg symbols, where (Lg − 1)Ts < Tg ≤ LgTs.

In the discrete system model, the adaptive sampling play its
part by selecting Meff samples per symbol from the filtered sam-
ples, where Meff is an effective oversampling factor. Such operation
is achieved by multiplication with the sample selection matrix S,
which has dimensionMeff(η+1)×MD(η+1) and is described by

Si,j =

{
1 for j = (νi − 1)D + 1,
0 otherwise,

(4)

where the vector [ν1, . . . , νMeff(η+1)]
T is chosen such that its entries

specify the indexes of the samples that will compose the resulting
vector zkk−η , which is 1-bit quantized to the vector ykk−η . These
operations can be represented by the following equations

ykk−η = Q
(
zkk−η

)
= Q

(
S G

[√
Es

Ts
e
ψkk−η−Lg + nkk−η−Lg

])
,

(5)

where the quantization operator Q(·) is applied element-wise. The
quantization of zk is described by yk,m = sgn(Re {zk,m}) +
j sgn(Im {zk,m}), where m denotes the oversampling index which
runs from 1 to M . The vector nkk−η−Lg contains complex zero-
mean white Gaussian noise samples with variance σ2

n = N0.

3. ADAPTIVE SAMPLING

This section presents a criterion to describe the sample selection
strategy, i.e., the matrix S, and illustrates the concept for a specific
frequency pulse.



3.1. MSE Criterion for Sample Selection

Similarly to [7], this study adopts a MSE criterion to assist the deci-
sion for sampling times, which are chosen based on the quantization
error averaged over all possible phase transitions. This MSE analy-
sis is done along one symbol duration in a noise free scenario. Let
Ψk(τ) the tilted phase description in (2), 0 ≤ τ < Ts, for a given
state s̃k, but with the extra frequency offset expressed in (3), i.e.,
Ψk(τ) = ψ(τ + kTs) + 2πnIF(τ + kTs)/Ts. With the titled CPM
symbol described by

√
Es/Tse

jΨk(τ), an MSE concept as function
of τ is described by

MSE(τ) =
1

nst

∑
s̃k

Es
Ts

∣∣∣∣ejΨk(τ) − 1√
2
Q
(
ejΨk(τ)

)∣∣∣∣2 , (6)

where nst is the number of all possible states s̃k and 1√
2
Q(·) is the

normalized 1-bit quantization operator applied continuously over the
symbol period.

The Fig. 3 represents some phase transitions of CPM signals
with Mcpm = 8, h = 1/Mcpm, φ0 = π/Mcpm, raised cosine as the
frequency pulse (1RC), oversampling factor of M = 11, tilted with
the frequency offset in (3) with nIF = 0.25. Such scheme is used
to illustrate (6) with Fig. 5, where it is possible to realize the best
sampling time instances with the minimum values of the graph.

3.2. Case Study on Raised Cosine Frequency Pulse

As proof of concept, this work uses the 1RC frequency pulse, vide
Fig. 2, as case study for two reasons. First, the use of smooth phase
transition reduces the out-of-band radiation, which is a desirable fea-
ture for the real-world systems. Second, the existence of near-zero
derivative regions of the phase response at the beginning and by the
end of the phase transition, promotes a predictable linear behavior
for the tilted phase trellis, for which, it is possible to take advantage
of such behavior by forcing zero-crossings when the low-IF variable
nIF is increased. With this in mind, the estimation of an optimal
oversampling factor M and distance between the sampling time in-
stances dsTs/M , can be done by rewriting (3) as

2π

(
h(Mcpm − 1)

2Ts
+
nIF

Ts

)
=

∆ψ

∆τ
=

2π/Mcpm

dsTs/M
,

which leads to

Mcpm (h(Mcpm − 1)/2 + nIF) = M/ds. (7)
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Fig. 3: 1RC Tilted phase transitions with, Mcpm = 8, h = 1/Mcpm, φ0 =
π/Mcpm, nIF = 0.25, M = 11
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Fig. 4: 1RC Tilted phase transitions with Mcpm = 4, h = 1/Mcpm, nIF =
0.75, M = 9

The Fig. 4 illustrates an example for (7), with Mcpm = 4, h =
1/Mcpm and nIF = 0.75 the ratio M/ds becomes 9/2, which indi-
cates thatM = 9 is an optimal oversampling factor and the sampling
instances at 2Ts/11, 7Ts/11 and Ts correspond to the samples with
least quantization error. This idea can be reproduced with the case
of Fig. 3, where M/ds = 11/2, and verified with the MSE profile
in Fig. 5. Note that in Fig. 3 the samples at 9Ts/M resolve all the
uncertainties brought by the coarse quantization with the sample at
Ts, i.e., it would be possible to reach the log2(Mcpm) = 3 bits per
channel use with an effective oversampling factor Meff = 2, using
an adaptive nonuniform sampling.

3.3. Receiver Complexity

The adaptive sampling permits the reduction of the number of an-
alyzed samples from M to Meff, which brings less complexity to
CPM receivers, that are often carried out with Viterbi or BCJR algo-
rithm. Both algorithms have complexity proportional to the number
of all possible state transitions PcpmM

L
cpm times the number of all

possible observed complex vectors 4M , which is a consequence of
the oversampling (factor M ) and 1-bit quantization (4-level phase).

The soft detection realized via a BCJR algorithm [13] based on
an auxiliary channel law W (yk|yk−1, xn) = P (yk|y

k−1
k−N , x

n),
that considers the dependency on N previous channel realizations,
relies on an extended state representation

sk =

{
[βk−L+1,x

k
k−L+2], if L > 1,

[βk], if L = 1.
(8)

where L = Lcpm + Lg + N is the overall memory. As input for
the algorithm, the channel output probabilities P

(
ykk−N |sk, sk−1

)
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Fig. 5: MSE profile for the scenario in Fig. 3
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Fig. 6: Achievable Rate of the considered CPM waveforms

involve a multivariate Gaussian integration in terms of

P
(
ykk−N |sk, sk−1

)
=

∫
zk
k−N∈Y

k
k−N

p(zkk−N |sk, sk−1)dzkk−N ,

(9)

where zkk−N is a complex Gaussian random vector that describes
the input of the 1-bit ADC, with a mean vector defined by mx =

S G
[√

EsTse
ψkk−N−Lg

]
, and covariance matrix

Kz = σ2
nSGG

HST , with S and G as introduced before with
η = N . The integration interval is expressed in terms of the quan-
tization region Ykk−N that belongs to the channel output symbol
ykk−N . After rewriting (9) as a real valued multivariate Gaussian
integration, shown in [9], the algorithm in [14] can be applied. How-
ever, as detailed in [10], the number of evaluations of (9) required
for the model, is proportional to 4MML

cpm, which is computationally
expensive when the oversampling factor M , the modulation order
Mcpm and the overall channel memory L are high valued, a point to
be improved by using adaptive sampling.

4. NUMERICAL RESULTS

With the purpose to preserve the transmit waveform and its crossings
on the 1-bit quantization levels, a suboptimal short bandpass receive
filter is considered as follows

g(t) =

√
1

Tg
rect

(
t− Tg/2
Tg

)
· ej2π∆f(t−Tg/2), (10)

with Tg = 0.5Ts, which is similar to the integrate and dump re-
ceiver considered in [15], but with its frequency response centered
in low-IF. For the considered CPM waveforms the following simu-
lation parameters are chosen:

• 4-CPFSK [9] : 1REC, Mcpm = 4, M = 3, nIF = 0 ;

• 8-CPFSK [10] : 1REC, Mcpm = 8, M = 3 and 5, nIF = 0.25 ;

• 4-CPM (Meff = 2) : 1RC, νMeff = [7, 9]T , Mcpm = 4, M = 9,
nIF = 0.75 (Fig. 4);

• 4-CPM (Meff = 3) : 1RC, νMeff = [2, 7, 9]T ,Mcpm = 4,M = 9,
nIF = 0.75 (Fig. 4);

• 8-CPM (Meff = 2) : 1RC, νMeff = [9, 11]T ,Mcpm = 8,M = 11,
nIF = 0.25 (Fig. 3);
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Fig. 7: BER performance of the considered CPM waveforms

• 8-CPM (Meff = 3) : 1RC, νMeff = [2, 9, 11]T , Mcpm = 8, M =
11, nIF = 0.25 (Fig. 3);

with Lcpm = 1, h = 1/Mcpm, φ0 = π/Mcpm, N = 0. 4-CPFSK [9]
and 8-CPFSK [10] serve as reference waveforms that use uniform
sampling and 1REC frequency pulse described in Fig. 2. The ad-
justable power containment bandwidth B90% is considered, where
we refer to 90% power containment as default. With this, the
adopted SNR definition is

SNR =
limT→∞

1
T

∫
T
|x (t)|2 dt

N0 B90%

=
Es

N0
(TsB90%)−1, (11)

where x(t) =
√
Es/Tse

jψ(t) is the complex low-IF representation
of the signal and N0 is the noise power density.

4.1. Achievable Rate

The method to compute a lower-bound on the achievable rate is ex-
plored in [9,16], where an auxiliary channel law is considered. Fig. 6
illustrates how the increase of the effective oversampling factor can
benefit the information rate results. The results confirm that based
on the adaptive sampling scheme the full rate of 8-CPM signals can
be achieved with 2-fold oversampling (Meff = 2) at high SNR.

4.2. Bit Error Rate

All BER results, from Fig. 7, has been computed using the BCJR
algorithm that implies the auxiliary channel law. In comparison to
uniform sampling, a significant benefit can be observed when using
the adaptive sampling with the same or less number of samples.

5. CONCLUSIONS

This study proposes a novel adaptive oversampling technique for
CPM signals with 1-bit quantization. The proposed method opti-
mizes the sampling time instances based on an MSE criterion. Nu-
merical results show that the corresponding receiver with nonuni-
form sampling provides a better BER performance when compared
to receivers with a higher complexity that use uniform sampling.
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