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Abstract: The routing algorithm is one of the main factors that directly impact on network1

performance. However, conventional routing algorithms do not consider the network data history,2

for instances, overloaded paths or equipment faults. It is expected that routing algorithms based on3

machine learning present advantages using that network data. Nevertheless, in a routing algorithm4

based on reinforcement learning (RL) technique, additional control message headers could be required.5

In this context, this research presents an enhanced routing protocol based on RL, named e-RLRP, in6

which the overhead is reduced. Specifically, a dynamic adjustment in the Hello message interval is7

implemented to compensate the overhead generated by the use of RL. Different network scenarios8

with variable number of nodes, routes, traffic flows and degree of mobility are implemented, in which9

network parameters, such as packet loss, delay, throughput and overhead are obtained. Additionally,10

a Voice-over-IP (VoIP) communication scenario is implemented, in which the E-model algorithm is11

used to predict the communication quality. For performance comparison, the OLSR, BATMAN and12

RLRP protocols are used. Experimental results show that the e-RLRP reduces network overhead13

compared to RLRP, and overcomes in most cases all of these protocols, considering both network14

parameters and VoIP quality.15

Keywords: Routing Algorithms, Machine Learning, Reinforcement Learning, Intelligent Routing,16

VoIP, QoE.17

1. Introduction18

Nowadays, there is a great demand for internet application services, such as video [1] and audio19

streaming, Voice-over-IP (VoIP) [2,3], online games [4] among others. Multimedia services represent20

more than 50% of current Internet traffic [5]. VoIP service is one of the most popular communication21

services due to the low phone call rate compared to conventional telephony [6], but also due to the high22

speech quality level achieved in recent years [7]. Thus, network providers need to perform monitoring23

and operation tasks to ensure an acceptable end-user’s Quality-of-Experience (QoE).24

In ad-hoc wireless networks, to ensure a reliable network performance is a great challenge due to25

the characteristic of this kind of network [8]. Dynamic topology, shared wireless channels, and limited26

node capabilities are factors that need to be considered in order to provide a high quality VoIP service.27

Submitted to Journal Not Specified, pages 1 – 30 www.mdpi.com/journal/notspecified

http://www.mdpi.com
https://orcid.org/0000-0002-8018-4721
https://orcid.org/0000-0003-1417-0433
https://orcid.org/0000-0002-7595-7187
https://orcid.org/0000-0002-3033-3020
https://orcid.org/0000-0002-7107-0888
https://orcid.org/0000-0001-5401-7551
http://www.mdpi.com/journal/notspecified


Version January 3, 2021 submitted to Journal Not Specified 2 of 30

For instance, device batteries are limited resources that can lead to link losses connected to that nodes28

during power failures [9].29

In a VoIP communication, end-user’s QoE is determined by the user’s perception [10–12]. In30

general, speech quality assessment methods can be divided in subjective and objective methods.31

Subjective methods are performed in a laboratory environment using a standardized test procedure32

[13]. Several listeners score an audio sample and the average value is computed and named Mean33

Opinion Score (MOS). However, subjective methods are time-consuming and expensive [14]. Another34

manner to predict the quality of a VoIP call is through a parametric method, such as the E-model35

algorithms [15,16] which provides a conversation quality index estimated through different parameters36

related to acoustic environment, speech codec characteristics and network performance parameters.37

Several factors, such as channel transmission capacity, node processing capacity, and routing38

protocols affect network performance parameters [17].39

Conventional routing protocols in ad-hoc networks, such as Optimized Link State Routing (OLSR),40

are unable to learn from abnormal network events that occurred several times in the past [18]; then,41

those protocols can choose a path that in the past had recurrent problems. For example, let us42

consider a path P where a given node N presents recurrent shut downs due to either device failures or43

programmed power-offs to save energy [19]. If a conventional protocol chooses this path P, network44

degradation can occur, such as packet losses [20]. A routing protocol that is able to learn from previous45

network failure events could avoid this path improving the network performance. Hence, there is a46

need for protocols capable to learn from network data history. Therefore, it is important that routing47

protocols use strategies that make them learn from past experiences to choose optimal routing paths48

[21].49

In the latest decades, Machine Learning algorithms have come to be used in several applications50

[22–28]. Thus, these algorithms can be applied into routing control protocols [29–31], specifically51

Reinforcement Learning (RL) is increasingly being used to solve routing problems [32–34]. In RL, an52

agent must be able to learn how to behave in a dynamic environment through iterations [35]. For53

instance, an agent who makes a choice receives a reward or a punishment whether the choice was54

good or bad, respectively. Hence, the RL technique can improve the steps along the decision making of55

path choice process, leading to better network performance, and consequently improved applications56

services, such as a VoIP communication [36].57

In [37], the authors introduce a generic model based on RL for ad-hoc networks focusing on58

routing strategies. Some works use RL for routing in urban vehicular ad-hoc networks (VANETs) [32].59

Other works focus on wireless sensor networks and their characteristics [38] or unmanned robotic60

systems [39].61

In [18], an intelligent traffic control through deep learning is proposed, whose results62

demonstrated a performance gain compared to the traditional Open Shortest Path First (OSPF) routing63

protocol. In [21], author uses Deep Reinforcement Learning to develop a new general purpose protocol,64

and obtained superior results compared to OSPF. However, both works do not focus on ad-hoc65

networks, and they do not compare the algorithm developed with ad-hoc network protocols. In66

[40], a Reinforcement Learning Routing Protocol (RLRP) is proposed, which can be applied to ad-hoc67

networks.68

Routing protocols require the use of control messages for their operation, they are responsible69

for the discovery of routes, for the dissemination of information on topology, among other things.70

However, control messages generate overhead on the network, thus decreasing network capacity71

especially in situations where the transmission channel may suffer interference or be saturated.72

The use of RL technique in routing protocols may require an extra header, new control messages,73

or increasing the sending frequency of these messages. There are studies that aim to reduce overhead74

in traditional protocols. In protocols that use RL, a mechanism that provides the reduction of this75

overhead is relevant, because these routing techniques generate additional overhead.76
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In RL, there is an agent that interacts with an environment through the choice of actions [35].77

In RL, each action generates a reward that generally defines whether the action taken was good or78

bad. In [40], the rewards are sent to the nodes through control messages using a reward header that79

generates an overhead due to the use of RL. This additional overhead impacts on the global network80

performance.81

In this context, there are research initiatives focused on decreasing the overhead originated by82

control messages. In [41], authors propose an adjustment in the interval for sending hello messages83

of the AODV protocol in a Flying Ad-Hoc Networks (FANETs) scenario, focusing on reducing the84

energy consumption of unmanned aerial vehicles (UAVs) by reducing the frequency of sending the85

hello message.86

The results show a reduction in energy consumption without loss of network performance.87

Despite presenting relevant results, the work focuses on FANETs and their specific characteristics. In88

[42] the authors propose three algorithms to adjust the time to send Hello messages. The first algorithm89

is called Reactive Hello, where Hello messages are only sent when the node wants to send some packet.90

In other words, the discovery of the neighborhood is done only when the node wants to send a packet.91

Despite reducing overhead once the number of messages is reduced, this approach can degrade the92

network if its mobility is high, since the changes will only be noticed when the node needs to send93

a packet. The second method is called Event-Based Hello and the adjustment is made based on the94

events that occur in the network. In this approach, at first a network node sends Hello messages with95

the default frequency, but if after a predefined period of time that node does not receive any Hello96

messages from a neighbor or does not need to send packets it stops sending Hello messages. The97

problem with this approach is that if all the nodes in the network move away and after the time period98

return to get closer, no one will send Hello messages and the topology information would be out of99

step until a node decides to send a packet with the same problem as the Reactive Hello approach.100

In the third method, called Adaptive Hello, each node in the network sends a Hello after moving a101

defined distance. The problem with this algorithm is that each node needs to assume its position. In102

[43], the frequency depends on the speed of the nodes, and the problem of this approach is when there103

are nodes that do not move but disconnect, for example, to save energy.104

The works previously mentioned demonstrate that a dynamic adjustment reduces overhead in105

relation to the simplistic model where the frequency of sending messages is defined in a static manner106

using fixed values. In this context, the goal is that the algorithm adjusts the sending of Hello messages107

according to the mobility of the network. The mobility occurs when a node moves out of the reach108

of neighbors, shuts down or it is inoperative. In case of mobility events, the frequency is adjusted to109

higher values so that the new network information can converge quickly. If there is no mobility on the110

network, the frequency should be reduced but not suspended as proposed in other works.111

In this context, the main contributions of this paper can be summarized as follows:112

• To develop an enhanced routing protocol based on RL technique, named e-RLRP, that is able113

to learn from network events history, avoiding paths with connection problems. Also, it is able114

to reduce the number of control messages. The routing algorithm based on RL is developed115

according to [40].116

• Implementation of an algorithm that compensates the overhead inserted by the messages related117

to RL algorithm in the RLRP. To the best of our knowledge, a dynamic adjustment algorithm118

of Hello Message time interval to compensate the overhead has not been treated by other119

routing protocols based on RL. Thus, the present research contributes with the advances in the120

state-of-the-art of these protocol types.121

• The performance of the proposed method is compared to other widely used routing protocols,122

such as the Better Approach To Mobile Ad-hoc Networking (BATMAN) and Optimized Link123

State Routing (OLSR), and also the RLRP protocol. To this end, different network typologies and124

traffic flows were implemented. The performance comparison considers key network parameters,125

such as throughput, packet loss rate and delay. Also, the speech perceptual quality in a VoIP126
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communication service is evaluated, in which two operation modes of the AMR-WB speech127

codec [44] are used.128

The algorithm to compensate for the overhead caused by the use of RL is based on the reduction129

of the overhead generated by another control message, the Hello message, which is responsible for the130

dissemination of information about the neighborhood of each network node. A dynamic adjustment in131

the frequency of sending the Hello message is capable of reducing the global overhead. The algorithm132

proposed in this work adjusts the sending of Hello messages according to the mobility of the network.133

Thus, this work contributes in the improvement of routing protocols based on RL technique, because it134

addresses one of the deficiencies of these protocols, which is the increasing number of control messages;135

therefore, the network overhead is also affected.136

In this work, different ad-hoc multihop network scenarios are implemented, considering different137

network topologies, a variable number of nodes, different traffic flows and several degrees of network138

mobility. In order to simulate network failures, some nodes drop in random instants during each139

simulation. In these scenarios, a VoIP traffic is simulated and used as a case study. To this end, an140

UDP traffic is defined between a pair of source and destination nodes, and some nodes in the network141

are randomly turned off in order to simulate a network failure. Thus, it is possible to obtain network142

parameters, such as throughput, delays, packet loss rate and number of control message sent to the143

network, which are used to evaluate the impact of the routing algorithm on the perceptual quality of144

VoIP communication according to the E-model algorithm described in ITU-T recommendation G.107.1145

[16]. It is important to note that VoIP service is used as a specific study case, but the proposed routing146

algorithm is for general purposes being agnostic of the service application. Finally, performance147

experimental results show that the proposed e-RLP overcame, in most of the test scenarios used in this148

work, the others routing protocols used for comparison purposes. The e-RLRP provides an overhead149

reduction of up to 18% compared to RLRP. The case study demonstrates that e-RLRP can provide a150

VoIP communication quality improvement of more than 90% if compared to OLSR, and up to 8% if151

compared to RLRP.152

The remainder of this paper is structured as follows. In the Section 2 a theoretical review is153

presented. The proposed routing algorithm based on RL is described in Section 3. In Section 4, the154

different steps of the experimental setup are described. Section 5 presents the experimental results.155

Finally, the conclusions are presented in Section 6.156

2. Theoretical Review157

2.1. Reinforcement Learning158

RL is a Machine Learning technique in which there is an agent that interacts with the environment159

through actions and receives rewards for the actions taken. The RL problem can be summarized as, an160

agent interacting with an environment in order to maximize the accumulated reward over time [35].161

The generalization of the RL interaction process [35] is shown in Figure 1, where the Agent162

interacts with the Environment through an at action. This interaction leads to a new st+1 state and163

generates a reward for the Agent.164

Figure 1. Generalized Reinforcement Learning Scheme
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Through the rewards the agent estimates the action taken, and this knowledge is then used by the165

agent to adapt future decisions, which is usually controlled by the estimated value Q. In general, the166

estimated value defines how good a given action is.167

The formulation of the RL optimization process can be represented as a Markov Decision Process168

(MDP) [35], introducing 4 sets S, A, P, R, where, S is a set of possible states of the agent; A represents169

the set of possible actions that an agent can take; P is defined as set of probabilities, in that an agent in170

a state s, advances to a state s′ when opting for an action A. And finally the reward function R, which171

generates the reinforcement that the agent receives for choosing action A.172

According to MDP the transition probabilities from s to s′ after taking action a (Pss′
a), can be173

described as follows:174

Pss’
a = Pr

{
st+1 = s′ | st = s, at = a

}
(1)

The estimation reward values (E) for action a (Rss′
a), from state s to s′, is defined by:175

Rss’
a = E {rt+1 | st = s, at = a, st+1 = s’} (2)

The sets S and P can be defined by a set of estimation values Q, which is dependent on the reward176

value obtained from an environment, and also from the current moment t, when the corresponding177

action has been performed. The estimation function values are presented as follows:178

Qk+1 = Qk + α ∗ [rk+1 −Qk] (3)

where Qk represents the estimation value on the previous step; Qk+1 is the current estimation value;179

rk+1 define the reward value for an action performed on the current step; α represents step size180

parameter; and k is the current step number.181

One of the RL’s questions is to take advantage of the current actions that generate greater rewards182

or explore new actions in order to be able to obtain even better rewards. In order to maximize the183

rewards received, the agent must balance the need to explore new actions or take advantage of current184

ones.185

In RL, the most common methods for action selection are greedy, e-greedy and softmax methods186

[45]. The greedy selection of the action with the maximum estimation value all the time. The e-greedy187

selection of action with the maximum estimation almost every time, however, sometimes it explores188

new actions at random. The Softmax method [46] provides a dynamic change of selection probabilities189

of the actions. This change of selection probabilities of the actions occurs according to a predefined190

probability function, such as the Gibbs-Boltzmann distribution [35].191

2.2. Ad-Hoc Networks Routing Protocols192

The purpose of a routing algorithm is to find good paths between a source and a destination node.193

Usually, the best path is one that has the lowest cost [47]. There are several routing algorithms, some of194

them aim to find the lowest cost path according to a defined metric. Then, for these protocols, the most195

common metric is the hop count where the cost of a path is the sum of the number of hops between196

source and destination.197

Ad-hoc network routing protocols must be able to handle a dynamic topology. This feature brings198

several challenges in their development. In general, these routing protocols can be divided into three199

subclasses:200

• Reactive protocols [48] which exchange topology information on demand. In this type of protocol,201

the exchange of information about the topology occurs only when a node wants to send a message.202

In the reactive protocol, the redundancy in the transmission of service messages is lower in203

relation to other type of protocols.204
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• Proactive protocols [49] which continuously update the route information by sending control205

messages. In this type of protocol, the exchange of information between nodes about the network206

topology occurs even before any node sends any packets. Proactive protocols generally provide207

greater flexibility in route selection compared to reactive ones. However, it produces a greater208

number of control messages that increases the overhead.209

• Hybrid protocols [50] that combine proactive and reactive characteristics. In hybrid protocols,210

some routes are created using a proactive approach and later the protocol works reactivelly.211

As previously stated, for performance validation, the proposed algorithm is compared to212

BATMAN, OSPF and RLRP routing protocols, which are described in the following lines.213

2.2.1. Better Approach To Mobile Ad-hoc Networking (BATMAN)214

The BATMAN [51] is a proactive routing protocol for Ad-hoc network. It uses a different approach215

for sharing the knowledge about the best paths. Basically, each node has information about which216

jump distance neighbor has the best route to a given destination X, that is, which neighbor must be217

chosen when it is desired to send a packet to node X.218

In the BATMAN each node in the network sends a message, called OriGinator Messages (OGMs),219

to all its neighbors to inform of its existence. The OGMs are small messages that contain the address220

of the originating node, the address of the node that relayed, a Time To Live (TTL) and a sequence221

number to record the route already taken by the packet. When a node receives an OGM message it222

updates its routing table, decreases the TTL and increases the sequence field. After that it forwards the223

message to its neighbors; this procedure is repeated until all nodes in the network receive the message.224

BATMAN uses the exchange of OGMs messages to influence the choice of routes, basically this225

happens as follows: When an X node in the network receives the same OGM from a Y emitter through226

two different paths it discards the last message and considers only the first message. The idea is that227

OGM that arrived first probably traveled the best route.228

The node X then records which neighbor of a jump emitted the OGM that arrived first. This229

neighbor is defined as the best path for a possible route to the Y transmitter. When OGMs go through230

bad routes are usually lost or take a longer time to arrive, thus, the node will only consider OGMs231

from good routes, that is, only the routes considered the best are recorded.232

Another important mechanism of BATMAN is the selective flooding system that works as follows:233

When a node receives a OGM in addition to relaying the OGM received to neighbors it also responds234

the source node with another OGM message. However, it does not send the message in brodcast, it235

first queries in its table which neighbor has the best route to the source node and sends only to this236

neighbor. In this way, messages are sent selectively. Which decreases the overhead of control messages.237

BATMAN is used as a reference in this work, because it is a well-known protocol for ad-hoc238

networks.239

2.2.2. Optimized Link State Routing (OLSR)240

The OLSR [52] is a proactive protocol commonly used in ad-hoc networks. The OLSR uses two241

control messages for topology discovery and maintenance: Hello and Topology Control (TC). Hello242

messages are used for neighbor discovery. The TC messages are used to disseminate information about243

neighbors and the state of the links established between them in order to build the network topology.244

The OLSR employs a technique called Multi-Point Replaying (MPR) to reduce overhead caused by245

sending control messages and the number of rebroadcasting nodes [53]. This technique is to limit the246

number of neighbors that can relay control messages. For this to occur each node selects a number of247

neighbors that can relay the messages. Unselected neighbors receive the messages but do not forward248

to other nodes. Additionally, TC packets include a sequence number to avoid infinite retransmissions249

due to undesirable loops.250
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The OLSR is used as a reference in this work because it is a widely used protocol in ad-hoc251

networks. In addition, this protocol provides better results, in terms of Quality of Service, than other252

routing algorithms [54] also considering the VoIP service [55].253

2.3. Reinforcement Learning Routing Protocol (RLRP)254

The RLRP is a reactive routing protocol for multi-hop ad-hoc networks. In general, the purpose of255

RLRP is to make a decision about the forwarding of packets to neighboring nodes based on estimated256

values. These values are dynamically updated through the rewards mechanism used by RL. The RLRP257

works on Linux systems with the TCP / IP stack providing routing for any data packets with either258

IPv4 or IPv6 addressing [40]. The routing process starts after initializing the routing daemon and runs259

on a created virtual interface.260

The RLRP as any other conventional protocol for ad-hoc multi-hop networks is based on two261

operational modes. The first one is path discovery, which occurs when a node needs to send a packet262

and has no routing information for a destination. The second is packet forwarding, which is when a263

protocol decides which route is the best to send the packet [40].264

In the first mode, the RLRP uses the reactive approach. Thus, a source node (A) sends a route265

request (RREQ) message to its direct neighbors and the neighbors in turn relay this RREQ to their266

neighbors. This manner, the RREQ message is forwarded to all network nodes until the transmission267

time-to-live (TTL) counter is reached or until a node that has already sent this RREQ receives the268

message again. All network nodes that participated in the RREQ relay get route information toward269

the source node and update their routing tables with that information. The destination node (B)270

receiving RREQ sends a route response message (RREP) that goes through the same relay process.271

Neighbor nodes of B and all node participating in RREP relay update their routing table with path272

information to reach node B. When the node A receives the RREP sent by the node B, all network273

nodes are already aware of the routes between A and B. Thus, the path discovery process ends and274

packet forwarding mode can be started.275

Conventional routing protocols have in their routing table a field with destination address276

information. Each route is associated to a cost that is calculated according to an specific metric, then277

the path which has the lowest cost is selected. In turn, RLRP uses RL to decide which path is the best.278

As explained in the subsection 2.1 in RL there is an agent, a set of actions that the agent can do.279

Each agent’s action generates a reward. To this end, there is a set of estimations for the actions. For280

better association Table 1 introduces a relationship between reinforcement learning and conventional281

routing protocols.282

Table 1. Relationship Between RL and Conventional Routing Protocols

RL Task Routing Task
Agent Source node

Set of actions Neighbors set
Set of estimation values (Q) Routing table

Agent Action Send a packet to neighbors
Agent receives a reward Node receives an ACK message

The Table 1 shows the relationship between the routing mechanism/tasks and the Reinforcement283

Learning mechanisms. Through this relationship it is possible to apply the RL to the routing task.284

Thus, an X node of the network that uses the RLRP protocol can be considered an Agent.285

The set of actions is the set of nodes in the network on which X can send messages. Sending a286

packet to a given network node is an Agent Action. And when sending this packet, node X expects to287

receive an Acknowledgment Message (ACK), if this happens it means that the message reached the288

given node, that is, a reward was generated for having chosen this node to send the message. If the289

ACK is not received it means that the message has been lost and the route is bad; then, node X receives290

a punishment for the chosen action.291
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Finally, the protocol routing table defines the best route to send a packet to a given destination.292

Similarly, an estimate set defines which action generates the best reward.293

2.4. Speech Quality Assessment in VoIP services294

One of the major concerns in VoIP service is the cost associated with the transmission medium.295

Due to this fact, in a VoIP communication compression techniques are used, and they do not cause296

significant losses in the received signal quality [56]. Speech codecs are responsible for this compression.297

There are different speech codecs, one of the most adopted in current communication networks is the298

Adaptive Multi-Rate Wideband (AMR-WB) codec [57].299

The AMR-WB is a speech codec used for mobile device communications. It is widely used by300

network operators to provide high quality conversations. AMR-WB is based on the linear prediction301

generated by the ACELP algebraic code that uses a vector quantization technique [58]. The AMR-WB302

uses nine operation modes, from 6.6 kbps to 23.85 kbps, and each of one has a different response to303

packet losses.304

The WB E-Model algorithm [16] is a parametric method that predict a conversation quality using305

different impairment factors related to acoustic environment, network, and speech codec. The RWB is306

the global quality rating that is obtained using all the impairment factors. This value is expressed on a307

quality scale from 0 to 129, the higher the value the better the quality. The RWB score is determined by:308

RWB = R0,WB − Is,WB − Id,WB − Ie-eff,WB + A (4)

where R0, WB represents the basic signal-to-noise ratio (SNR), and for WB networks the standardized309

value is 129; Is,WB represents the combination of all impairments which occur simultaneously with the310

voice signal, for WB signals the adopted values of this factor is 0; Id,WB represents the impairments311

caused by delay and; Ie-eff,WB is the quality degradation due to equipment, specifically the speech code;312

A represents an advantage factor, but in WB E-model is not considered and it is equal to 0. In this313

paper, we mainly focus on Ie-eff,WB, and the Id,WB is also evaluated.314

The Ie-eff is determined by:315

Ie,eff,WB = Ie,WB + (95− Ie,WB).
Ppl

Ppl + BplWB
(5)

where, Ie,WB is the equipment impairment factor at zero packet-loss, only related to codec impairment;316

Ppl is the probability of packet losses, and the BplWB is the packet-loss robustness factor for a specific317

codec in WB networks.318

In Annex IV of ITU-T recommendation G.113 [59], Ie and Bpl values for AMR-WB cocec are319

defined. Table 2 presents the number of bits and bit-rate of each AMR-WB operation modes, and their320

existing standardized Ie and Bpl values. Note that some Bpl values are not defined (ND) in some321

cases.322

Table 2. AMR-WB Operation Modes and their Bit-rates, Ie and Bpl Values

AMR-WB Operation Modes Number of bits Bit-Rate (kbps) Ie Bpl
0 132 6.60 41 ND
1 177 8.85 26 ND
2 253 12.65 13 4.3
3 285 14.25 10 ND
4 317 15,85 7 ND
5 365 18,25 5 ND
6 397 19.85 3 ND
7 461 23.05 1 ND
8 477 23.85 8 4.9

In this work, the operation modes used in the simulation tests were 2 and 8, because they have323

the Bpl parameter already defined, as can be observed in Table 2. Thus, the Ie,eff,WB value can be324

computed.325
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The Id is computed using the following relation:326

Id,WB = Idte,WB + Idle,WB + Idd,WB (6)

where Idte,WB gives an estimate for the impairments due to talker echo, Idle,WB represents impairments327

due to listener echo, and Idd,WB represents the impairment caused by an absolute delay Ta in the328

network. In this study, the Idte,WB and Idle,WB are not considered because they are related to echo and329

acoustic problems at the end-sides of the communication that is out of the scope of this research.330

The Idd,WB is defined by:331

Idd,WB =

{
1, Ta < 100ms

25[(1 + X6)(
1
6 ) − 3(1 + (X

3 )
6)

1
6 + 2], Ta > 100ms

(7)

where332

X =
log( Ta

100 )

log2
(8)

It is important to note that in the proposed network scenarios, the Ppl and Ta variable values can333

be obtained in each simulation test; therefore, the RWB can be computed using (4).334

3. The Proposed e-RLRP Algorithm335

In this section, the proposed e-RLRP algorithm is explained. Firstly, the RL technique in the336

routing protocol is implemented according to [40]. Later, the proposed method to reduce the overhead337

is detailed.338

3.1. Reinforcement Learning used in routing protocol339

The reward propagation with Acknowledgment message, the reward generation and the340

estimation values are presented.341

3.1.1. Reward propagation with Acknowledgment Message (ACK)342

The reward value is directly related to the receipt of the ACK. When a node wants to send a343

packet to a given destination it selects a neighbor from the existing one and sends the packet to that344

neighbor. After that, it waits for the corresponding ACK message, which contains meta-information345

about the received packet, and the reward value by the action of choosing this neighbor. This ACK346

message can return using a path different from the one used to send the corresponding packet.347

If the ACK is not received within a pre-defined time then the sender node sets a punishment, i.e,348

a negative reward to the neighboring node to which the packet was forwarded. This negative value349

is set to -1. If the ACK is not being received probably the neighboring node has gone offline. The350

neighboring may be experiencing hardware issues such as power outages, strong interference with351

wireless transmission or the node is overloaded with incoming traffic. Hence, it is consistent that this352

neighbor should be avoided in the future.353

If the ACK message is received on time a reward value will be provided within the message. If the354

value is high it means that the neighbor has a good way to the destination, the probability of choosing355

this neighbor in the future will increase. If the value is low it means that the chosen neighbor does not356

have a good route to that destination, because it has hardware problems, there may be many hops or357

the further links quality is weak. In this case the source node will slowly decrease the estimation value358

for this neighbor, which is likely to cause the node to later choose other neighbors.359

3.1.2. Reward Generation360

The mechanism for adjusting the reward value must be flexible, that is, the adjustment may not361

be too small that do not cause changes or too large as to induce sudden change due to a specific events.362
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For example, if the value of the punishment after choosing a bad route is too low, the estimated value363

of that route will slowly decrease and probably this bad route can still be chosen for a long time. On the364

other hand, if the punishment value is too high, a route may no longer be chosen because of just one365

packet loss event. Therefore, a balance must be found between low and high rewards/punishment.366

According to [40], the reward value is calculated as follows: When a node X receives a packet367

of node Y, an ACK is sent with the reward value to Y. To calculate the reward value, the sum of the368

estimated values that each neighbor has in relation to destination node Y, called Qdstip is divided by369

the corresponding number of neighbors (N). Thus, the rewardvalue is the average of the Q values of370

the neighbors in relation to node Y. The rewardvalue is calculated according to:371

rewardvalue = ∑ Qdstip /N (9)

Upon receiving the rewardvalue , the node Y adjusts the estimated value for node X. However if372

the ACK is not received, the node Y automatically set the reward value to -1, that is, a punishment is373

generated that negatively impacts the estimated value for the route. The estimation value is defined in374

the next subsection.375

3.1.3. Estimation Values based on Rewards376

An initial value must be set for each node when the protocol starts, which is often called cold start.377

The RLRP initially defines all neighbors with a value of 0 when a source node has no route information378

towards a destination node. The available range of estimated values is defined as: [0, 100]. When the379

protocol starts the route discovery process the estimate values are set as follows:380

Qn = 100/Nhops (10)

where Qn is the estimated value for destination IP towards neighbor n; Nhops is the number of hops in381

which RREQ or RREP messages has traversed from the source to the destination node382

After the path discovery procedure ends all nodes in the network have the initial estimated values383

for all routes. According to the calculation presented in 10, the estimation value is initially defined384

based on the number of hops between the source and the destination. It can be defined that the RLRP385

uses an initial approach of the hop count metric, in which the routes with the least hop are chosen.386

However, afterwards the values be adjusted since the route with the least number of hops is not387

always the best one. For, a route may have the least number of hops but present an overloaded link or388

have nodes that present malfunctions. The adjustment is made according to the received reward value.389

The estimation value Q like described in 2.1 is calculated as follows:390

Qk+1 = Qk + α ∗ [rk+1 −Qk] (11)

where Qk+1 represents the new estimation value for the action; Qk is the actual estimate value; rk+1391

define the reward value obtained; α represents step size parameter; and k is the current step number.392

Therefore, the estimated value as stated above is impacted by the reward value.393

In e-RLRP, the reward is associated with the successful delivery of packets. Then, in general,394

the local reward is given to the route that has the best rate of success in delivering packets, and the395

long-term reward is related to the global network performance by always looking for routes with the396

highest success rates. As explained in Subsection 2.1, the RL algorithm has to consider two approaches397

in order to obtain a long-term reward, the selection of actions that obtain the highest reward values or398

explore new actions that can generate even better rewards. For this decision task, the e-RLRP uses the399

Softmax method [60].400
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3.2. Algorithm used in the e-RLRP to reduce the overhead401

To send a packet, the node needs to know what neighbors nodes are directly connected. Therefore,402

a neighborhood discovery procedure is required. In RLRP, this procedure occurs through the403

broadcasting of messages called Hello.404

By default, Hello messages are sent every 2 seconds, thus, the information about neighbors is405

updated in the same period of time. This update interval parameter is called Broadcast Interval (BI).406

The RLRP has 10 types of headers, two of them are Reward Header and Hello Header. The structure of407

data fields of the Reward Header and Hello Header are shown in Table 3 and Table 4, respectively.408

Table 3. Reward Header Format

Field Name Size (bits) Description

TYPE 4 Type ID of the header
ID 20 ID of the service message

NEG_REWARD_FLAG 1 Check reward
REWARD_VALUE 7 Value of the reward

MSG_HASH 32 ID of the data packet

The Reward Header is 8 bytes. The Type field defines what the header is, the ID field is the unique409

identifier of the message service. The Neg Reward Flag field is a test flag that checks whether the410

reward is negative or positive, the Reward Value is a value of reward, and finally, the Msg Hash is the411

identifier of the packet to which the reward belongs.412

Table 4. Hello Header Format

Field Name Size (bits) Description

TYPE 4 Type ID of the header
IPV4_COUNT 1 Number of IPv4 addresses
IPV6_COUNT 2 Number of IPv6 addresses
TX_COUNT 24 Number of frame re-broadcasts
GW_MODE 1 Indicates GateWay Mode

IPV4_ADDRESS 32 IPv4 address (if exists)
IPV6_ADDRESS_1 128 IPv6 address #1 (if exists)
IPV6_ADDRESS_2 128 IPv6 address #2 (if exists)
IPV6_ADDRESS_3 128 IPv6 address #3 (if exists)

The Hello Header size ranges from 4 to 56 bytes, this variation depends on the node address that413

can be IPV4 or IPV6. The Type field defines what the header is, the field IPv4 Count define the number414

of assigned IPv4 addresses, limited to one. The IPv6 Count is number of assigned IPv6 addresses,415

limited to three. Tx Count is the number of re-broadcasts, GW Mode define that a node is a Gateway416

in the network, the IPv4 and IPv6 address define the address of the node.417

As can be observed in Table 3, the Reward header used in RLRP is 8 bytes long and generates an418

additional overhead, which corresponds to the use of RL technique.419

In this context, the present research implemented an algorithm to reduce the overhead generated420

by the Hello message, specifically to reduce the frequency of sending Hello messages in order to421

compensate the additional overhead generated by the Reward header.422

It is clear that increasing the time interval for sending Hello messages, defined by the BI parameter,423

will decrease the frequency of sending messages and consequently, the overhead is also decreased.424

However, a high value also impacts the time of updating information about the neighborhood, and the425

routing can be negatively affected.426

Thus, the proposed algorithm implemented in the e-RLRP is capable of dynamically adjusts the427

frequency of sending Hello messages. This adjustment in the parameter BI is made according to the428

mobility present in the network. If the network is static, that is, no neighbors enter or leave the range,429

it is not necessary to send Hello messages with a high frequency. Otherwise, if the network presents a430

high mobility, to send messages more frequently is necessary.431
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A general high representation of the proposed algorithm is introduced in Figure 2.432

Figure 2. Scheme of the dynamic adjustment algorithm proposed

The sending of Hello messages starts together with the e-RLRP daemon. Next, the algorithm433

checks the mobility of the network. To this end, there is a function named Update Neighbors File434

responsible for updating the list of neighbors every time a Hello from a new node is received. And435

there is a other function named Check Expired Neighbors that checks if a Hello message has been436

received from neighbors every 7 seconds, if a neighbor is 7 seconds or more without sending a Hello,437

it is removed from the list because it is out of reach. This interval of time was defined experimentally438

in [40]. In case, a new neighbor is detected or an existing one is lost, it will be considered that there is439

mobility in the network.440

In the proposed e-RLRP, when mobility occurs, the BI value will be reduced to a lower limit called441

BI Lower Limit (BILL), the algorithm waits for a new time interval, sends a message and restarts the442

process. If a mobility event does not occur, the BI parameter will be increased with the Adjustment443

Factor (AF) parameter respecting the upper limit called BI Upper Limit (BIUL). When the time defined444

by BI is reached, a Hello message will be sent and the process is restarted. Hence, the frequency of445

sending Hello messages is adjusted according to the mobility of the network446

It is worth mentioning that the proposed dynamic adjustment is not based on RL, because RL447

uses more computational resources.448

3.2.1. Definition of the Upper and Lower Limits of Broadcast Interval449

The higher the value of the BI parameter, the lower the frequency of sending Hello messages, and450

consequently the overhead is reduced. However, it is necessary to define a limit to that value does not451

grow indefinitely.452

The BIUL cannot be greater or equal than 7 seconds due to the Check Expired Neighbors453

function. Otherwise, the network nodes will be eliminated when the function timeout will be reached.454

Considering that the BIUL value must be lower than 7 seconds and also the latency of the existing455

network, the value 6 seconds is defined in order to guarantee that neighbors are not erroneously456

removed.457

To define the BILL, 3 values of BI lower that 2 seconds are tested in the scenario called Programmed458

that is described in subsection 4.1. The overhead is calculated considering the source and destination459

node. The BI value of 2 seconds, defined in the RLRP, is also tested in the same scenario, and the460

overhead obtained was 1.42 MB. The BI values 0.5, 1.0 and 1.5 were tested. Table 5 shows the overhead461

results for each BI value.462
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Table 5 shows the increase in overhead of the tested values in relation to the default value used in463

RLRP. The BI value of 1.5 had a gain of 2.12%, the value of 1.0 presented an increase of 4.22%. The464

value of 0.5 obtained the highest increase, a gain of approximately 12.67%. Considering this value as a465

high increase in overhead compared to the previous ones, the value of 0.5 is discarded. Hence, we466

opted for the intermediate tested value, and BILL is set to 1.0.467

3.2.2. Adjustment factor468

The objective of the e-RLRP is to reduce overhead but without degrading the performance of the469

algorithm. Thus, after a scenario of high mobility is detected, the rise of the BI parameter should be470

slower to ensure that the upper limit is slowly reached, because there is a likelihood that the occurrence471

of mobility will repeat itself. In a scenario in which an isolated episode of mobility occurs, the climb472

should be a little faster. Therefore, the AF also should has responses according to the mobility of the473

network. It is important to note that in initial tests, we used fixed values for the frequency of Hello474

messages, and the results demonstrated that dynamic methods permit to obtain better results in terms475

of the network performance parameters used in this work.476

To ensure that no sudden changes occur in the AF, a scale of ten positions is defined, in which the477

upper limit is called AFul and the minimum value is called AFll.478

Also in the Programmed scenario described in the subsection 4.1, the convergence time (CT)479

of the e-RLRP, which is defined as the time elapsed between breaking a route until the algorithm480

converged to find a new route, was also evaluated. Experimental test results demonstrated that the481

average of CT is 20.6 seconds.482

The AF value cannot be high to avoid be aggressive enough to BI parameter reach the BIUL before483

the CT. Then, to calculate AFul the Arithmetic Progression (AP) or also known as arithmetic sequence484

is applied, with a difference between the consecutive terms equal to BI, where term A1 is BILL, An is485

BIUL and the sum of the terms must not be greater than CT.486

To ensure that value is not reached before 20.6 seconds, the value is rounded to 21 seconds and487

applying the formula of the sum of a AP, the AFul value is obtained.488

CT ≤ (BIUL + BILL)× n
2

(12)

Applying the result of Equation 12 in the formula for the general term of a AP:489

BIUL=BILL + (n− 1)×AFul (13)

The value obtained for AFul is 1, then, the maximum value of AF should be 1. As previously490

stated, a scale of 10 position was defined. Then, the value of AFll is 0.1, and each position of that scale491

is increased by 0.1.492

Whenever mobility occurs in the network the AF is decreased in the scale. The increase will occur493

when there is a tendency of decrease in mobility during a period of time.494

This period of time called Time of Check (TC) is defined by the average between CT value and495

the time spent for the algorithm starting from BILL until reaching value BIUL with adjustment AFll. To496

calculate TC, first, the formula of the general term of AP is applied. The AFll is the common difference,497

BIUL and BILL are the terms An and A1 respectively.498

Table 5. Broadcast Interval values to obtain overhead

Broadcast Interval Value (s) Overhead (MB) Overhead increase (%)

1.5 1.45 2.12% gain in relation to 2.0 s
1.0 1.48 4.22% gain in relation to 2.0 s
0.5 1.60 12.67% gain in relation to 2.0 s
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BIUL = BILL + (n− 1) ∗ AFll (14)

Applying the result of Equation 14 in the formula for the sum of a AP and averaging:499

TC =
CT + (BILL+BIUL)∗n

2
2

(15)

The TC value is 99.7, in this way after 99.7 seconds if there is a tendency to reduce mobility, the AF500

will be increased. A mobility counter denominated Mcounter will be used to count how many mobility501

events occur in the TC time period. Whether when a new neighbor comes within range of a given502

node or when a neighbor leaves within range of that node503

Mcounter = NewNeighborscounter + LostNeighborscounter (16)

Belonging to a family of statistical approaches used to analyze time series data in the area of504

finance and technical analysis [61], the Exponential Moving Average (EMA) can be used to estimate505

values [61–63]. The EMA is used to calculate if the occurrence of mobility tends to increase or decrease506

according to the equation 17. The EMA is applied in a series of 10 values Mcounter.507

EMAk = (Mcounter − EMAk-1)(
2

(N + 1)
) + EMAk-1 (17)

If EMAk < EMAk-1, the number of mobility events has a tendency to decrease, then the AF value508

will be increased. The period N of 10 values was chosen precisely because it is the number of times509

that AF must be increased until reaching AFul.510

The scheme of the AF adjustment algorithm is shown in Figure 3511

Figure 3. Scheme of dynamic adjustment of AF

Thus, the BI is adjusted according to the mobility of the network, making possible to reduce512

overhead.513

4. Experimental Setup514

In this section, different network scenario configurations used in the simulation tests for515

performance validation of the proposed e-RLRP are described. Different network topologies with516

different numbers of nodes, routes, traffic flows and network mobility conditions are considered. Firstly,517
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the four network topologies used in the simulations are described. Later, two simulation scenarios are518

explained. Finally, the transmission rate in the scenarios are explained, and the simulation environment519

is described.520

4.1. Network Topology521

In this work, four network topologies were created to simulate a wireless node network, which522

are called T1, T2, T3 and T4. Node names were distributed in order to improve the understanding of523

the scenarios that will be described later. The topologies were developed in order to guarantee that524

each route has a different number of hops. In Topology T1, there are 3 routes and 8 nodes as illustrated525

in Figure 4.526

Figure 4. Network Scenario Topology T1

The Topology T2 is an extension of T1 with the addition of three nodes, thus, in total there are 11527

nodes and four different routes, which are distributed according to Figure 5.528

Figure 5. Network Scenario Topology T2

The T3 is illustrated in Figure 6. This topology is also an extension of the T1 but now we add five529

extra nodes; thus, there are a total of 13 nodes with 5 different routes.530

Figure 6. Network Scenario Topology T3
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The T4 is illustrated in Figure 7. This topology like the others is an extension of the T1 but now531

we add eight extra nodes; thus, there are a total of 16 nodes with 6 different routes.532

Figure 7. Network Scenario Topology T4

4.2. Emulation Scenario533

In order to test the functionalities of the e-RLRP, two different scenarios were developed in which534

there are routes that degrade network performance. To this end, some nodes in the network were535

configured to disconnect on a recurring basis at random instants, simulating node failures and mobility536

in the network.537

In the first scenario, only topology T1 is used. A flow is defined with node C being the source and538

E being the destination, the node D will be programmed to shut down 5 times. This node is part of the539

shortest route between the source and destination of traffic for T1. For a better later association, the540

first scenario is named Programmed (P). Thus, the scenario P is a proof of concept to test the RL in the541

e-RLRP, in which a better performance than other protocol is expected. In principle, the route with the542

least number of hops is the best path and is the one that should be chosen initially by all protocols.543

However, in this scenario, the choice of this path will cause degradation in the network since there is a544

node that recurrently disconnects causing packet loss. As the e-RLRP can learn from the network, it545

should be able to avoid the path containing nodes which present recurrent drops.546

The second scenario, named Random (R), also a flow is defined with node C being the source and547

E being the destination. The nodes A, D and G of topology T1; nodes A, D, G and J of T2; nodes A,548

D, G, J and L of T3; and nodes A, D, G, J, N, and O of T4 are randomly disabled at different instants,549

in order to simulate random drops. In addition, 3 configurations for drops are defined. In the first550

configuration, 3 drops are drawn between the aforementioned nodes for each topology. In the second551

configuration, 5 drops are drawn, and in the third configuration 7 drops are considered. The reason552

for choosing only these nodes is to ensure that each route has only one node that fails, thus, the same553

probability to draw a drop for each route is ensured. These nodes are randomly disconnected in each554

simulation. The instants in which each node drops during the simulation is randomly defined, then,555

the routing algorithm does not know which node is down to avoid that path. The objective of this556

scenario is to test the e-RLRP in a random scenario when the network degradation increases. The557

network scenarios characteristics used in this research are different from network scenarios in which558

node drops are controlled, and a scheduler can be implemented in the network. It is important to note559

that the e-RLRP could also work in conjunction with a scheduler for more complex network scenarios,560

but these scenarios are out of the scope of this present research.561
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Additionally, two different configurations of the scenario R is defined for topologies T3 and T4562

where the flow number is greater than one. A network configuration with 3 flows is defined, in which563

the first one is from node C to E, second one from node F to B and third one from node I to H. The564

second network configuration considers 4 flows, where an additional flow from node M to K is added565

to the three previous mentioned flows. The objective of these two scenarios, is to investigate the impact566

of the additional network overhead due to RL control messages.567

In these both scenarios, the ability of e-RLRP to avoid routes that degrade the network through568

the use of RL is tested. And mainly the ability of e-RLRP to reduce network overhead in mobility569

scenarios is also evaluated, providing a higher throughput and reducing the Ppl value.570

Table 6 shows which nodes have been configured to shut down simulating a drop in T1, T2,571

T3 and T4 topologies for all scenarios. In the Programmed Scenario uses only the T1 because it is a572

scenario for proof of concept.573

Table 6. Nodes Set to Disconnect

T1 T2 T3 T4
Scenario P D - -
Scenario R ADG ADGJ ADGJL ADGJNO

4.3. Transmission rates of AMR-WB codec574

This work also aims to test the impact of the previously mentioned routing protocols in a real575

communication service, to this end, VoIP communication scenario is used as a case study. Thus, a576

traffic from node C to E is simulated with different bit-rates defined according to the AMR-WB codec.577

In addition, we used UDP communication and a packet time-length of 20 ms.578

Speech signal transmitted on an IP network is compressed by a speech codec, and them this579

payload must be packaged. For this, Real Time Protocol (RTP), the UDP and IP headers are inserted.580

The bit-rates presented in Table 2 only refer to the payload, then, it is necessary to add the number of581

bits regarding the RTP (12 bytes), UDP (8 bytes) and IP (20 bytes) headers to obtain the transmission582

rate. For example, AMR-WB-Mode 2 (12.65 kbps) contains 253 bits that are sent every 20 ms, then if583

the 320 bits of headers are added, a total of 573 bits are sent in this same period of time, that represents584

a transmission rate of 28.65 kbps. Table 7 shows the transmission rates used in the test scenarios.585

Table 7. Bit-rate After Adding RTP, UDP and IP headers

AMR-WB bit-rate (kpbs) bit-rate considering RTP/UDP/IP headers (kpbs)
12.65 28.65
23.85 39.85

4.4. Emulation environment586

To test and analyze the performance of the four protocols previously mentioned, we use the587

network emulator Common Open Research Emulator (CORE) [64]. Developed by Boeing’s Research588

and Technology division, CORE is a real-time, open source, emulator. The CORE is chosen because it589

enables the use of real-world routing protocols and applications using Linux system virtualization. The590

e-RLRP code must be executed on a Linux platform. Each node in the emulator is a virtual machine591

with network interface and resources shared with the host machine. The e-RLRP, RLRP, BATMAN and592

OLSR routing protocols are installed to be used by network nodes.593

The network performance metrics obtained in the tests were throughput, Probability of Packet594

Loss (Ppl), the Round Trip Time (RTT) and Overhead. The throughput and Ppl values are calculated595

using Iperf tool [65]. It is capable of generating UDP and TCP traffic streams at defined rates. To596

calculate RTT, the UDP stream is replaced by an ICMP stream generated by the native Linux PING597

command. The PING command itself returns the RTT value. The Overhead is measured using the598
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WireShark [66] tool. In addition to the aforementioned tools, the native Linux shell script is used to599

shutdown nodes on a programmed or random basis600

Finally, the speech quality of a VoIP communication is evaluated. To this end, the network601

parameters, such as Ppl and delay were used as inputs of the E-model algorithm to estimate the602

communication quality.603

5. Results And Discussions604

In order to evaluate the e-RLRP performance in relation to BATMAN, OLSR and RLRP protocols,605

different network scenarios were emulated. Each simulation scenario run 50 times, and the average606

value for each scenario is computed. The simulation of each scenario takes 600 seconds.607

In the test scenarios, the AMR-WB operation modes 2 and 8 were considered. Thus, the608

transmission bit-rates considered were those presented in Table 7.609

Firstly, an ideal scenario without drops is tested to assess the overhead reduction obtained by the610

e-RLRP in relation to RLRP. The Table 8 shows the overhead in the network scenario without drops,611

these results represent the average overhead of the nodes, considering AMR-WB Modes 8 and 2.612

Table 8. Overhead (kbps) Obtained in Scenario Without Drops considering AMR-WB Modes 8 and 2

Routing Protocol Mode 8 Mode 2
(kbps) (kbps)

e-RLRP 2.29 2.24
RLRP 2.71 2.65

Batman 6.60 6.30
OLSR 2.63 2.58

As expected, the results obtained in the ideal scenario without drops demonstrate that e-RLRP613

obtained an overhead approximately 16% lower than RLRP. This result is due to the fact that the614

e-RLRP in a scenario without falls keeps the frequency of sending messages lower than the RLRP.615

In a real ad-hoc network environment, nodes move or may fail, degrading the network616

performance. Therefore, the e-RLRP, RLRP, BATMAN and OLSR protocols are testing in scenario617

where mobility occurs. The throughput and Ppl results, in the so-called scenario P, are illustrated in618

Table 9 and Table 10, respectively.619

Table 9. Throughput (kbps) obtained in Scenario P considering AMR-WB Modes 2 and 8

AMR-WB Mode-8 AMR-WB Mode-2
T1 T1

(kbps) (kbps)

e-RLRP 39.80 28.60
RLRP 39.79 28.60

Batman 39.28 28.25
OLSR 36.59 26.31

Table 10. Ppl (%) obtained in Scenario P considering AMR-WB Modes 2 and 8

AMR-WB Mode-8 AMR-WB Mode-2
T1 T1
(%) (%)

e-RLRP 0.04 0.03
RLRP 0.05 0.05

Batman 1.3 1.23
OLSR 8.08 8.02

Results presented in Table 9 and Table 10 demonstrate that e-RLRP and RLRP have a better620

performance than BATMAN and OSLR. The e-RLRP and RLRP have a Ppl value close to zero because621

they avoid the route containing node B that presents recurring drops. The value does not reach zero622

because when the routing starts, both protocols choose the route of node B which has the lowest623

number of hops, but after successive drops of node B, both protocols no longer considers the use of624

this route.625
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Differently, the OLSR protocol chooses the route which contains node B, because is the path with626

the least number of hops. Despite the BATMAN protocol obtained a Ppl higher than e-RLRP and RLRP,627

it presented a performance better than OLSR. This is due to the OGM messaging mechanism.628

The overhead results for scenario P considering AMR-WB Modes 2 and 8 are shown in Table 11.629

Table 11. Overhead (kbps) Obtained in Scenario P considering AMR-WB Modes 2 and 8

Mode 8 Mode 2
(kbps) (kbps)

e-RLRP 2.80 2.75
RLRP 2.90 2.84

Batman 6.90 6.50
OLSR 2.88 2.80

The overhead results presented in Table 11 show that the e-RLRP reduced the overhead in relation630

to the RLRP by approximately 7%, and also got better results than BATMAN and OLSR protocols. This631

happens because the e-RLRP reduced the frequency of sending Hello messages.632

Similarly, the same network performance parameters are evaluated in R scenario. The Throughput,633

Ppl when nodes are shut down 3 times are presented in Table 12, and Table 13, respectively.634

Table 12. Throughput (kbps) Obtained in Scenario R with Three Drops considering AMR-WB Modes 2
and 8

AMR-WB Mode-8 AMR-WB Mode-2
T1 T2 T3 T4 T1 T2 T3 T4

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps)
e-RLRP 39.40 39.50 39.54 39.56 28.31 28.39 28.41 28.41
RLRP 39.06 39.46 39.51 39.51 28.11 28.37 28.42 28.38

Batman 39.05 39.20 39.24 39.30 28.06 28.17 28.20 28.22
OLSR 37.57 38.5 39.09 39.14 27.06 27.74 28.11 28.12

Table 13. Ppl (%) Obtained in Scenario R with Three Drops considering AMR-WB Modes 2 and 8

AMR-WB Mode-8 AMR-WB Mode-2
T1 T2 T3 T4 T1 T2 T3 T4
(%) (%) (%) (%) (%) (%) (%) (%)

e-RLRP 1.00 0.73 0.64 0.58 1.01 0.72 0.65 0.63
RLRP 1.85 0.85 0.72 0.71 1.72 0.81 0.75 0.76

Batman 1.86 1.49 1.39 1.25 1.79 1.51 1.35 1.32
OLSR 5.60 3.25 1.78 1.65 5.40 3.02 1.71 1.67

As can be observed in Table 12 and Table 13, the OLSR had the worst performance considering635

Ppl and Throughput, which is explained by the use of RL in e-RLRP and RLRP, and by the BATMAN636

OGM message mechanism. The e-RLRP reached similar throughput results to the other protocols, but637

in some scenarios, the Ppl had a significant reduction with e-RLRP.638

The overhead when nodes are shut down 3 times are presented in Table 14. The results presented639

in the Table 14 demonstrate that the overhead of e-RLRP is lower than the RLRP, in some scenarios this640

reduction is close to 18%.641

Table 14. Overhead (kbps) Obtained in Scenario R with Three Drops considering AMR-WB Modes 2
and 8

AMR-WB Mode-8 AMR-WB Mode-2
T1 T2 T3 T4 T1 T2 T3 T4

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 2.71 2.83 2.95 2.99 2.68 2.77 2.89 2.92
RLRP 2.79 2.93 3.45 3.89 2.71 2.95 3.03 3.77

Batman 6.20 7.80 8.03 8.45 6.05 7.70 7.97 8.23
OLSR 2.74 2.94 2.99 3.27 2.70 2.86 2.95 3.18

The Throughput, Ppl and Overhead when nodes are shut down 5 times are presented in Table 15,642

Table 16 and Table 17, respectively.643
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Table 15. Throughpu (kbps) Obtained in Scenario R with Five Drops considering AMR-WB Modes 2
and 8

AMR-WB Mode-8 AMR-WB Mode-2
T1 T2 T3 T4 T1 T2 T3 T4

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 38.98 39.11 39.28 39.28 28.06 28.20 28.23 28.21
RLRP 38.97 39.01 39.16 39.23 28.01 28.05 28.16 28.19

Batman 38.48 38.20 38.88 38.95 27.68 27.47 27.87 27.99
OLSR 38.03 38.38 38.60 38.64 27.32 27.59 27.73 27.74

Table 16. Ppl (%) Obtained in Scenario R with Five Drops considering AMR-WB Modes 2 and 8

AMR-WB Mode-8 AMR-WB Mode-2
T1 T2 T3 T4 T1 T2 T3 T4
(%) (%) (%) (%) (%) (%) (%) (%)

e-RLRP 2.10 1.71 1.29 1.30 1.90 1.67 1.28 1.25
RLRP 2.10 1.98 1.60 1.54 2.05 1.91 1.54 1.50

Batman 3.30 4.01 2.30 2.10 3.20 3.91 2.50 2.30
OLSR 4.44 3.56 3.01 2.95 4.47 3.52 3.04 2.98

Table 17. Overhead (kbps) Obtained in Scenario R with Five Drops considering AMR-WB Modes 2
and 8

AMR-WB Mode-8 AMR-WB Mode-2
T1 T2 T3 T4 T1 T2 T3 T4

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 2.90 2.98 3.01 3.03 2.86 2.94 2.98 3.02
RLRP 2.94 3.14 3.88 3.95 2.92 3.09 3.78 3.90

Batman 11.05 11.20 11.40 11.48 11.01 11.00 11.30 11.38
OLSR 3.16 3.70 4.67 4.72 3.12 3.75 4.52 4.61

According to the results obtained in a Five Drops scenario, the e-RLRP and RLRP algorithm644

performed better than BATMAN and OLSR. Also, the e-RLRP obtained an overhead reduction and Ppl645

lower values in relation to RLRP.646

Similarly, the Throughput, Ppl and overhead, when nodes are shut down 7 times, are presented647

in Table 18, Table 19 and Table 20, respectively.648

Table 18. Throughput (kbps) Obtained in Scenario R with Seven Drops considering AMR-WB Modes 2
and 8

AMR-WB Mode-8 AMR-WB Mode-2
T1 T2 T3 T4 T1 T2 T3 T4

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 38.98 39.15 39.13 39.19 28.01 28.15 28.14 28.16
RLRP 38.97 38.95 38.98 39.01 28.00 27.99 28.06 28.19

Batman 37.19 37.63 37.47 37.49 26.73 27.05 27.00 27.03
OLSR 36.77 37.98 38.52 38.55 26.40 27.30 27.71 27.73

Table 19. Ppl (%) Obtained in Scenario R with Seven Drops considering AMR-WB Modes 2 and 8

AMR-WB Mode-8 AMR-WB Mode-2
T1 T2 T3 T4 T1 T2 T3 T4
(%) (%) (%) (%) (%) (%) (%) (%)

e-RLRP 2.10 1.61 1.59 1.45 2.01 1.57 1.60 1.54
RLRP 2.09 2.13 2.10 1.55 2.05 2.12 1.90 1.83

Batman 6.55 5.45 5.85 5.62 6.56 5.39 5.60 5.49
OLSR 7.60 4.56 3.20 3.10 7.70 4.54 3.10 3.01

According to the presented results, the scenario where 7 drops occurs, the e-RLRP obtains better649

performance in all case compared to BATMAN and OLSR, and also it presents a better performance650

than RLRP in most of the scenarios.651
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Table 20. Overhead (kbps) Obtained in Scenario R with Seven Drops considering AMR-WB Modes 2
and 8

AMR-WB Mode-8 AMR-WB Mode-2
T1 T2 T3 T4 T1 T2 T3 T4

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 2.98 3.41 4.84 4.99 2.94 3.25 4.10 4.96
RLRP 3.10 3.64 5.29 5.45 3.01 3.39 5.36 5.25

Batman 11.12 11.15 12.10 12.35 11.21 11.13 12.01 12.49
OLSR 3.26 3.79 5.10 5.17 3.20 3.85 4.99 5.01

In general, the performance gain in scenarios R was lower than in scenario P. This behavior is652

because, in the scenario P the drops are recurrent in only one route, which facilitates the learning653

process of the e-RLRP.654

Figure 8 demonstrates the e-RLRP performance improvement in relation to the other protocols.655

The Ppl values obtained is the average of the results obtained in the four topologies and both AMR-WB656

rates modes used in the tests.657

Figure 8. e-RLRP Performance, in terms of Ppl, and considering different number of drops

From the results we can conclude that the performance of the e-RLRP in relation to the other658

three protocols increases when the number of drops increases. By increasing the number of drops, the659

performance of all algorithms degrades, however, in the e-RLRP and RLRP this degradation is lower.660

Figure 9 shows the relationship between e-RLRP performance and the number of nodes in the661

network. The Ppl values obtained are the average of the results obtained in the scenarios of 3, 5 and662

7 drops and both AMR-WB rate modes used in the tests. It is important to note that the higher the663

number of nodes in the network, the higher the processing needed by the RL algorithm to determine664

the reward values. Despite the RL processing increases, the performance obtained by the e-RLRP, in665

terms of Ppl, is superior in relation to the other routing protocols.666

Figure 9. e-RLRP Performance, in terms of Ppl, and considering different number of nodes

The Throughput, Ppl and overhead, for three flows considering AMR-WB Modes 8, are presented667

in Table 21, Table 22 and Table 23, respectively.668

Similarly, the Throughput, Ppl and overhead, for three flows, and considering AMR-WB Mode 2,669

are presented in Table 24, Table 25 and Table 26, respectively.670
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Table 21. Throughput (kbps) Obtained in Scenario R with Three Flows considering AMR-WB Mode 8

Mode 8
T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops
CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 38.50/38.38/38.20 38.16/38.11/38.33 37.81/37.60/38.10 38.49/38.40/38.27 38.15/38.17/38.32 37.91/37.77/38.06
RLRP 38.33/38.19/38.18 38.10/38.14/38.28 37.77/37.59/37.50 38.40/38.32/38.25 38.14/38.16/38.29 37.87/37.75/37.83

Batman 38.17/38.18/38.37 37.60/37.71/37.72 36.89/36.90/37.77 38.18/38.22/38.26 37.71/37.83/37.79 36.83/37.02/36.95
OLSR 37.93/38.11/38.18 37.32/37.84/38.01 37.46/37.59/37.44 38.04/38.22/38.26 37.48/37.96/38.06 37.52/37.66/37.56

Table 22. Ppl (%) Obtained in Scenario R with Three Flows considering AMR-WB Mode 8

Mode 8
T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops
CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH

(%) (%) (%) (%) (%) (%)

e-RLRP 0.69/0.63/1.03 1.40/1.10/0.82 2.05/2.63/1.99 0.51/0.51/0.85 1.17/1.10/0.72 1.80/2.20/1.40
RLRP 0.71/1.06/1.09 1.31/1.19/0.85 2.15/2.66/2.86 0.52/0.74/0.91 1.20/1.15/0.80 1.90/2.20/2.00

Batman 1.41/1.18/1.01 2.70/2.40/2.28 5.40/4.60/5.10 1.10/0.98/0.88 2.30/2.00/2.10 4.60/4.10/4.20
OLSR 1.75/1.27/1.1 3.41/1.96/1.52 2.95/2.68/3.01 1.45/0.98/0.89 2.90/1.67/1.40 2.80/2.45/2.70

Table 23. Overhead (kbps) Obtained in Scenario R with Three flows considering AMR-WB Mode 8

Mode 8
T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops
(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 2.78 3.33 5.92 2.81 3.35 6.17
RLRP 4.78 4.72 7.95 4.90 4.82 6.41

Batman 9.90 12.20 15.45 10.20 11.98 14.85
OLSR 3.92 5.10 6.80 4.10 5.33 6.21

Table 24. Throughput (kbps) Obtained in Scenario R with Three Flows considering AMR-WB Mode 2

Mode 2
T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops
CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 27.84/27.87/27.77 27.86/27.65/27.82 27.48/ 27.31/27.67 27.85/27.86/27.76 27.65/27.71/27.84 27.50/27.35/27.69
RLRP 27.83/27.71/27.73 27.80/27.70/27.66 27.46/27.30/27.23 27.84/ 27.76/27.75 27.65/27.74/27.82 27.48/27.34/27.20

Batman 27.69/27.74/27.76 27.60/27.63/27.66 26.69/26.97/26.87 27.70/ 27.75/27.75 27.63/27.68/27.71 26.87/26.91/26.80
OLSR 27.57/27.66/27.77 27.06/27.49/27.61 27.23/27.29/27.20 27.61/27.65/27.71 27.24/27.48/27.65 27.21/27.24/27.23

Table 25. Ppl (%) Obtained in Scenario R with Three Flows considering AMR-WB Mode 2

Mode 2
T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops
CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH

(%) (%) (%) (%) (%) (%)

e-RLRP 0.64/0.56/0.99 1.14/1.27/0.71 1.95/2.58/1.25 0.62/0.54/0.85 1.32/1.01/0.59 1.86/2.39/1.19
RLRP 0.68/1.03/1.11 1.20/1.15/0.78 2.02/2.59/2.84 0.64/0.95/0.98 1.32/1.02/0.72 1.95/2.42/2.69

Batman 1.19/1.01/1.03 1.70/1.40/1.28 4.50/4.10/4.30 1.15/ 0.98/0.96 1.42/1.22/1.10 4.10/3.98/4.35
OLSR 1.62/1.28/0.90 3.45/1.90/1.47 2.83/2.60/2.94 1.49/1.23/0.86 2.67/1.90/1.32 2.71/2.62/2.83

Table 26. Overhead (kbps) Obtained in Scenario R with Three flows considering AMR-WB Mode 2

Mode 2
T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops
(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 2.62 3.09 6.89 3.02 2.97 6.14
RLRP 4.16 4.76 6.92 4.21 4.80 6.62

Batman 9.70 11.45 14.26 9.23 11.52 13.52
OLSR 3.86 4.95 5.76 3.49 4.88 6.77

Analyzing the scenario with 3 flows, it can be seen that the e-RLRP overcomes in most cases the671

other protocols considering Ppl and Troughput. Regarding overhead, the e-RLRP reached the best672

results in all the network scenarios.673
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The Throughput, Ppl and overhead, for four flows, and considering AMR-WB Mode 8, are674

presented in Table 27, Table 28 and Table 29, respectively.675

Table 27. Throughput (kbps) Obtained in Scenario R with Four Flows considering AMR-WB Mode 8

Mode 8
T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops
CE/FB/IH/MK CE/FB/IH/MK CE/FB/IH/MK CE/FB/IH/MK CE/FB/IH/MK CE/FB/IH/MK

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 38.40/38.23/38.29/39.8 38.23/37.98/38.26/39.8 38.40/37.93/38.26/39.8 38.41/38.29/38.29/39.8 38.28/38.09/38.21/39.8 38.04/37.87/37.86/39.8
RLRP 38.37/38.23/38.27/39.01 38.14/38.16/38.20/39.6 37.89/37.79/38.18/39.8 38.39/38.28/38.29/39.8 38.15/38.07/38.18/39.8 38.02/37.82/37.81/39.8

Batman 37.99/38.06/38.15/39.7 37.60/37.49/37.53/39.8 36.52/36.71/36.79/39.8 38.04/38.10/38.22/39.8 37.71/37.54/37.51/39.8 36.72/36.92/36.81/39.8
OLSR 38.22/38.18/38.21/39.8 37.40/37.61/38.07/39.8 37.45/37.71/37.71/39.8 38.25/38.22/38.25/39.8 37.46/37.59/38.10/39.8 37.46/37.60/37.62/39.8

Table 28. Ppl (%) Obtained in Scenario R with Four Flows considering AMR-WB Mode 8

Mode 8
T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops
CE/FB/IH/MK CE/FB/IH/MK CE/FB/IH/MK CE/FB/IH/MK CE/FB/IH/MK CE/FB/IH/MK

(%) (%) (%) (%) (%) (%)

e-RLRP 0.52/0.88/0.92/0 0.96/1.10/1.14/0 1.79/2.30/1.85/0 0.49/0.75/ 0.81/0 0.83/1.30/1.01/0 1.45/1.89/1.81/0
RLRP 0.61/0.95/0.96/0 1.22/1.25/1.15/0 1.83/2,31/1.93/0 0.55/0.84/0.81/0 1.17/1.35/1.10/0 1.50/1.96/1.89/0

Batman 1.59/1.41/1.16/0 2.58/2.89/2.78/0 5.40/4.90/4.70/0 1.46/ 1.31/0.98/0 2.30/2.76/2.65/0 4.78/4.30/4.65/0
OLSR 0.98/1.10/1.02/0 3.11/2.57/1.38/0 3.08/2.68/2.64/0 0.92/0.98/0.91/0 2.95/2.63/1.29/0 2.95/2.59/2.43/0

Table 29. Overhead (kbps) Obtained in Scenario R with Four flows considering AMR-WB Mode 8

Mode 8
T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops
(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 3.15 4.19 4.20 3.25 4.37 4.60
RLRP 3.45 5.45 4.92 3.49 5.6 5.10

Batman 9.22 10.20 13.03 9.3 10.10 13.02
OLSR 3.22 4.72 5.30 3.33 4.68 5.90

Similarly, the Throughput, Ppl and overhead, for four flows, and considering AMR-WB Mode 2,676

are presented in Table 30, Table 31 and Table 32, respectively.677

Table 30. Throughput (kbps) Obtained in Scenario R with Four Flows considering AMR-WB Mode 2

Mode 2
T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops
CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH

(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 27.58/27.48/27.50/28.6 27.51/27.59/27.43/28.6 27.29/27.15/27.48/28.6 27.88/27.82/27.79/28.6 27.81/27.70/27.74/28.6 27.71/27.41/27.65/28.6
RLRP 27.57/27.48/27.49/28.6 27.35/27.42/27.41/28.6 27.20/27.13/27.40/28.6 27.85/27.77/27.78/28.6 27.80/27.62/27.72/28.6 27.68/27.37/27.62/28.5

Batman 27.32/27.31/27.39/28.6 26.99/26.94/26.91/28.5 26.27/26.52/26.60/28.6 27.61/27.64/27.73/28.6 27.35/27.31/27.33/28.6 26.62/26.87/26.93/28.6
OLSR 27.29/27.38/27.49/28.6 26.78/27.21/27.33/28.6 26.95/27.02/26.92/28.5 27.61/27.64/27.73/28.6 27.35/27.31/27.33/28.6 26.62/26.87/26.93/28.6

Table 31. Ppl (%) Obtained in Scenario R with Four Flows considering AMR-WB Mode 2

Mode 2
T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops
CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH CE/FB/IH

(%) (%) (%) (%) (%) (%)

e-RLRP 0.58/0.90/0.85/0 0.87/1.06/1.11/0 1.62/2.10/1.55/0 0.52/0.76/0.83/0 0.75/1.40/1.01/0 1.17/2.20/1.32/0
RLRP 0.59/0.91/0.89/0 1.38/1.26/1.19/0 1.93/2,20/1.63/0 0.62/0.84/ 0.84/0 0.75/1.41/1.05/0 1.23/2.32/1.43/0

Batman 1.52/1.55/1.26/0 2.70/2.86/2.98/0 5.30/4.40/4.10/0 1.49/1.35/1.03/0 2.41/2.56/2.49/0 5.01/4.1/3.89/0
OLSR 1.62/1.28/0.90/0 3.45/1.90/1.47/0 2.83/2.60/2.94/0 1.49/1.35/1.03/0 2.41/2.56/2.49/0 5.01/4.1/3.89/0

We can see from the results of the 4-flow scenarios that e-RLRP outperforms other protocols in678

most cases in terms of Throughput and Ppl. Regarding the overhead e-RLRP obtained the best results679

in all tested scenarios. In addition, it is worth mentioning that the overhead in general increases when680

there are more flows, however, specifically the overhead generated by the Hello control message is not681

so impacted. This is because Hello messages are exchanged regardless of the number of streams in the682

network.683
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Table 32. Overhead (kbps) Obtained in Scenario R with Four flows considering AMR-WB Mode 2

Mode 2
T3 T4

3 Drops 5 Drops 7 Drops 3 Drops 5 Drops 7 Drops
(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)

e-RLRP 2.96 4.26 4.13 3.28 4.10 4.46
RLRP 3.88 5.25 4.61 3.72 4.55 4.88

Batman 8.26 9.04 11.65 8.25 9.16 11.33
OLSR 3.06 4.66 5.30 3.95 4.68 5.11

In the results presented in Tables 27, 28, 30 and 31, regarding Throughput and Ppl, we can observe684

that one of the traffic flow (noted as MK) reached a Ppl almost equal to O, because there is a direct685

route between the two pairs of nodes and no drops occurred in this path. The extra flows were added686

in order to overload the network.687

Analyzing the results of the scenarios with more than one traffic flow, specifically three and four688

flows, it is possible to observe that the e-RLRP outperforms the other routing protocols in most of689

the network scenarios tested, in terms of Ppl and Throughput. Regarding overhead, we can see that690

e-RLRP continues overcoming the other protocols. The experimental results confirmed that e-RLRP691

obtained a lower overhead than the RLRP in most of the scenarios, even when the number of traffic692

flows, the number of routes or node drops were increased. Thus, these demonstrated that the proposed693

adjustment function worked properly in the task of overhead reduction.694

Additionally, the RTT parameter values obtained in scenario P is presented in Figure 10. Figure 11695

shows the average of the RTT values of the scenarios R with also a single flow. These results represent696

the average values of two AMR-WB mode, because there was not difference between them.697

Figure 10. RTT Obtained in Scenario P (Programmed)

Figure 11. RTT Obtained in Scenario R (Random)

Analyzing the results presented in Figure 10 and Figure 11, it is observed that the e-RLRP and698

RLRP presented the highest RTT values. This can be justified because they are implemented in user699

space on Linux using a dynamic Python interpreter. According to [40], this implementation-type700

generates a great loss of performance mainly due to the high number of I/O operations that cause701

delays in the packet sending process. It is worth mentioning that this is a limitation generated by the702

language in which it was implemented and not by the code / project. Thus, the implementation of703
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these both protocols had a restriction in this regard, that was reflected in RTT values obtained in the704

experimental tests. According to (6) and (7), delays in the network have a negative impact on speech705

quality predictions.706

Finally, the speech communication quality was evaluated using (4), (5) and (6) considering the707

Ppl and RTT values found in test scenarios that consider a single traffic flow with the topologies T1,708

T2, T3 and T4 used in this work. Figure 12 presents the RWB scores for scenario R with Three Drops,709

Figure 13 presents the RWB scores for Five Drops and Figure 14 with Seven Drops.710

Figure 12. RWB Score in Scenario R with Three Drops

Figure 13. RWB Score in Scenario R with Five Drops

Figure 14. RWB Score in Scenario R with Seven Drops

Figure 15 presents the RWB scores for scenario P.711

As can be observed from Figure 12 to Figure 15, the use of e-RLRP promotes a gain of RWB score712

in relation to those obtained by the RLRP, BATMAN and OLSR protocols. In some cases the gain in713

relation to OLSR is more to 90%. In relation to BATMAN, in some cases the gain is approximately 33%.714

In relation to the RLRP, the gain approaches 8%.715

Therefore, RL in routing protocols improves the user’s QoE in a speech communication service.716

The e-RLRP not only reduces overhead but also provides a positive impact in the quality of VoIP717

communication, mainly because the Ppl is decreased.718



Version January 3, 2021 submitted to Journal Not Specified 26 of 30

Figure 15. RWB Score in Scenario P

6. Conclusion719

In this work, the experimental results demonstrate that a routing protocol based on RL overcomes720

traditional protocols, such as BATMAN and OLSR, specifically in Ppl and throughput parameters.721

These network performance results prove the relevance of the RL-based routing protocols to improve722

the computer, and ad-hoc networks. However, The RL technique generates an extra overhead. Thus,723

the proposed and developed adjustment algorithm was able to reduce the network overhead in terms724

of reducing the number of control messages. The dynamic adjustment in the frequency of sending725

Hello messages provided a reduction of up to 18% overhead. This gain increases the network’s726

payload providing better network performance. The global performance of the proposed method was727

optimized using different configuration and parameters values, which final configuration was defined728

experimentally. In terms of throughput and Ppl, in most of the test scenarios used in this work the729

e-RLRP achieved better performance, specially in the Ppl parameter. Therefore, it is demonstrated that730

the proposed solution reduces overhead and also improve the network conditions.731

Reducing network overhead in conventional protocols is an important approach because it732

provides performance improvements. This approach is even more relevant when it is used by new733

routing techniques, such RL, that aim to improve network performance but it generates extra overhead.734

Thus, an important contribution of this work is to demonstrate that extra overhead can be reduced735

using the proposed dynamic adjustment function.736

It is worth noting that in our experimental tests different network topologies and configurations737

were used, including different numbers of nodes and their drops, and also different numbers of traffic738

flows.739

Also, experimental results show the impact of network performance parameters on the user´s740

QoE in the VoIP communication services. The e-RLRP obtained better values of RWB due to having741

lower Ppl values despite to have higher RTT values, which are calculated according to (6) and (7)742

defined in the WB E-model algorithm. In this case, it is observed that Ppl has a greater negative impact743

on speech quality than RTT, for the values obtained in the simulation scenarios considered in this744

research. Results indicate a quality improvement of more than 90% if compared to OLSR, and up to745

8% if compared to RLRP. Therefore, it can be concluded that the RL-based routing protocols has a746

significant positive impact on user’s QoE in real-time communication services.747

As a general conclusion, this research highlights the usefulness of incorporating machine-learning748

algorithms in routing protocols, specially for ad-hoc networks that recurrently present node drops.749

RL-based routing protocols can help to improve network conditions, and as a consequence, different750

communication applications are improved. In this work, only the VoIP service is evaluated, but in751

future works, video communication service will be also evaluated. Also, the implemented dynamic752

adjustment mechanism in the sending of Hello messages provided a performance improvement on the753

network, mainly by reducing overhead, which is an important approach to be applied in RL-based754

routing protocols.755

In a future work, the proposed e-RLRP will be implemented in a real network environment756

to validate the performance results and potential benefits found in our simulation tests. Also, the757
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inclusion of a scheduler or decentralized schedulers will be considered to work in conjunction with758

the e-RLRP algorithm in a future research, in which more complex and dynamic networks will be also759

implemented.760
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