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ABSTRACT
In this paper, we present a novel low-complexity adaptive
beamforming technique using a conjugate gradient (CG) al-
gorithm to avoid matrix inversions. The proposed method ex-
ploits algorithms based on the maximum entropy power spec-
trum (MEPS) to estimate the noise-plus-interference covari-
ance matrix (MEPS-NPIC) so that the beamforming weights
are updated adaptively, thus greatly reducing the computa-
tional complexity. MEPS is further used to reconstruct the de-
sired signal covariance matrix and to improve the estimate of
the desired signals’s steering vector (SV). Simulations show
the superiority of the proposed MEPS-NPIC approach over
previously proposed beamformers.

Index Terms— Adaptive beamforming, Conjugate gradi-
ent, Matrix reconstruction, Spatial power spectrum.

1. INTRODUCTION

Adaptive beamforming aims to extract the signal from a cer-
tain direction while suppressing interference and noise. The
technique has been widely used in many fields such as wire-
less communications, sonar and radar [1]. However, stan-
dard adaptive beamformers are well known to be sensitive
to steering vector (SV) mismatches, array imperfections or
environmental uncertainties due to non-ideal conditions and
many different factors (e.g., wavefront errors, local scattering
and finite sample sizes) [2]. Hence, various adaptive beam-
formers have been developed in order to mitigate the effects
of these problems. Existing methods include diagonal load-
ing [3, 4], the worst-case optimization in [5] and the pro-
jection techniques and eigenspace-based beamformer inves-
tigated in [6–9]. However, these approaches are limited when
the SV mismatch is severe.

Recent works show that the main cause of beamformer
performance degradation is the leakage of a component of
the signal of interest (SOI) in the sample covariance matrix
(SCM) [10]. Recently, an approach to adaptive beamforming
was presented that removes the effect of the SOI component
from the covariance matrix by reconstructing the noise-plus-
interference covariance (NPIC) matrix. The NPIC matrix
in [11] is reconstructed by integrating the assumed SV and
the corresponding Capon spectrum over a range of angles

in which the SOI is absent. The NPIC-based beamformer
in [12] relies on a sparse reconstruction method. In [13, 14],
computationally efficient algorithms via low complexity re-
construction of the NPIC matrix are presented. In [15] a
subspace-based NPIC matrix reconstruction algorithm was
proposed. Later, in [16] an approach is developed using
spatial power spectrum sampling (SPSS). In [17] the SOI
component is eliminated from the direction of arrival (DoA)
of the related bases in order to construct an NPIC matrix
directly from the signal-interference subspace.

It is worth noting that the use of adaptive antenna arrays
and their applications has a trade-off between computational
complexity and performance which has a direct relation with
the adaptation algorithm. However, in practice and for large
systems, these techniques require the computation of the in-
verse of the input data SCM (or NPIC matrix), rendering the
method very complex.

In this work, we develop a conjugate gradient (CG)
adaptive version of the maximum entropy power spectrum
noise-plus-interference covariance (MEPS-NPIC) technique
in [18], denoted MEPS-NPIC-CG. The proposed MEPS-
NPIC-CG algorithm updates the beamforming weights with
a reduced cost as it does not explicitly form the covariance
matrices, relying instead on low-cost iterative techniques.
The estimated weight vector is obtained from a coarse esti-
mate of the angular sector where the desired signal (DS) lies,
using CG iterations that avoid the explicit construction of the
covariance matrix. We similarly implicitly reconstruct the DS
covariance matrix and obtain a better desired signal SV esti-
mate using low-cost iterations. An analysis of computational
complexity shows that MEPS-NPIC-CG has low-complexity
and outperforms other existing techniques.

2. PROBLEM BACKGROUND

Let us assume a linear antenna array with M sensors, spaced
by distance d, that receive narrowband signals which impinge
on the array from several far-field sources. The array obser-
vation vector at the t-th snapshot can be modeled as

x(t) = a(θ0)s0(t) +

L∑
l=1

a(θl)sl(t) + n(t), (1)



where s0(t) and sl(t) denote the waveforms of the SOI and
lth interfering signal, respectively. The additive white Gaus-
sian noise vector n(t) is assumed spatially uncorrelated from
the DS and the interfering signals. The angles θ0 and θl
(l = 1, · · · , L) denote the DoAs of the DS and interference,
respectively. For a sensor array with M sensors, a(·) des-
ignates the corresponding SV, which has the general form
a(θ) =

[
1, e−jπd̄ sin θ, · · · , e−jπ(M−1)d̄ sin θ

]T
, where d̄ =

2d/λ, λ is the wavelength, and (·)T denotes the transpose.
Assuming that the SV a0 = a(θ0) is known, for a given beam-
former w, the performance is evaluated by the output signal-
to-interference-plus-noise ratio (SINR) as

SINR = σ2
0 |wHa0|2/wHRi+nw, (2)

where Ri+n is the NPIC matrix, σ2
0 is power of the DS and

(·)H stands for Hermitian transpose. The beamformer that
maximizes (2) is equivalent to finding the solution that main-
tains a distortionless response toward the SV a0:

min
w

wHRi+n w s.t. wHa0 = 1. (3)

The solution to (3) yields the optimal beamformer given by

wopt = R−1
i+na0/aH

0 R−1
i+na0, (4)

which is the adaptive weight vector based on the minimum
variance distortionless response (MVDR) criterion [1]. More-
over, the array covariance matrix R = E{x(t)xH(t)} is

R = Ri+n + Rs =

∫
Φ

P (θ)a(θ)aH(θ)dθ, (5)

where P (θ) is the power spectrum of the signals and Φ =
[Θ̄ ∪ Θ] covers the union of the angular sectors of the noise-
plus-interference signal, Θ̄, and of the DS region, Θ (obtained
through some low-resolution direction finding methods [1]),
while Rs = σ2

0a0aH
0 is the theoretical DS covariance matrix.

Since Ri+n is unknown in practice, it is substituted by the data
SCM as R̂ = (1/K)

∑K
t=1 x(t)xH(t), whereK is the number

of received snapshot vectors.

3. PROPOSED MEPS-NPIC-CG ALGORITHM

3.1. Maximum Entropy Power Spectrum

In the proposed beamforming method, an approach different
from prior works is adopted to reconstruct the NPIC and the
DS covariance matrices. The essence of the idea is based on
the use of the spatial spectrum distribution over all possible
directions and coarse estimates of the angular regions where
the DS and the interferers lie. In this work, we exploit maxi-
mum entropy power spectrum estimation [19]:

P̂meps =
1

εp|aH(θ)R̂
−1

u1|2
(6)

where u1 = [ 1 0 ··· 0 ]T, εp = 1/uT
1 R̂
−1

u1.

3.2. Desired Signal SV Estimation

In practice, we have inaccurate SV estimates, resulting in per-
formance degradation. Therefore, we utilize the knowledge
of the angular sector of the SOI to construct a criterion which
can be used to estimate the actual SV. This algorithm is based
on the multiplication of an estimate of the DS covariance ma-
trix and the nominal SV of the SOI, which results in a vector
much closer to the SV of SOI. First, the DS covariance matrix
can be reconstructed based on MEPS by numerically evaluat-
ing (5) over Θ

R̂s ≈
S∑
i=1

P̂meps a(θsi)aH(θsi)∆θs, (7)

where Θ is sampled uniformly with S sampling points spaced
by ∆θs, so that {a(θsi)|θsi ∈ Θ} lies within the range space
of R̂s. Let ā be the nominal desired signal SV. If the set Θ is
such that the noise and interference power are dominated by
the signal power in the covariance estimate (7), then

â0 = R̂sā ' (σ2
0a0aH

0 )ā'σ2
0(aH

0 ā)a0, (8)

is proportional to the desired signal’s SV (note that the nom-
inal SV is usually a good enough approximation so that aH0 ā
is far from zero).

3.3. NPIC Matrix Reconstruction Using CG

The classical least mean square (LMS) algorithm in [20] is
based on adjusting the array of sensors in real-time toward a
signal coming from the desired direction while the interfer-
ences are attenuated. The LMS algorithm is an CG algorithm
which searches for the minimum of a quadratic cost function.
We apply LMS to solve the MVDR optimization problem in
(3) by using the Lagrange multiplier α to include the con-
straint into the objective function as

J(w) = wHR̂i+n w + α(wHâ0 − 1). (9)

The cost function J(w) can be minimized by applying the
steepest descent algorithm as follows

w(t+ 1) = w(t)− (1/2)µ∇J(w), (10)

where∇J(w) is the gradient of the cost function with respect
to w(t). The gradient vector can be obtained from (9) as

∇J(w) = 2R̂i+nw(t) + αâ0. (11)

Exploiting (5) over angular Θ̄ and the MEPS estimate (6), the
NPIC matrix can be reconstructed by numerically evaluating

R̂i+n =

∫
Θ̄

P̂mepsa(θ)aH(θ)dθ, (12)



Sampling Θ̄ uniformly withQ sampling points spaced by ∆θ,
(12) can be approximated by

R̂i+n ≈
Q∑
i=1

a(θi)aH(θi)

εp|aH(θ)R̂
−1

u1|2
∆θ. (13)

Here and in the next section we show how to apply the update
(10) while avoiding to compute (13) explicitly. Rewriting (11)
by substituting the expression for R̂i+n, we get

∇J(w) =

Q∑
i=1

2P̂meps

(
aH(θi)w(t)

)
a(θi)∆θ + αâ0, (14)

By substituting (14) into (10) and rearranging, we obtain a
recursion for the beamformer given by

w(t+ 1) = w(t)− µ
[
â0 − r(t)

]
, (15)

where r(t) =
∑Q
i=1 P̂meps

(
aH(θi)w(t)

)
a(θi)∆θ and µ is the

steepest descent step size. To find the beamformer, the con-
jugate gradient algorithm is used to solve the unconstrained
quadratic programming problem in (9) as algorithm 1.

Algorithm 1 Conjugate Gradient [21]
1: Choose an initial iterate w0;
2: Set g0 = ∇J(w0) and e0 = −g0;
3: Set t← 0;
4: while ‖∇J(wt)‖ > tol. do
5: Define et = â0 − rt
6: Determine the step-size µt = − eT

t gt
eT
t R̂i+net

7: wt+1 = wt + µtet;
8: gt+1 = ∇J(wt+1)

9: Determine βt as βt =
gT
t+1(gt+1 − gt)

gT
t gt

;

10: Set et+1 = −gt+1 + βtet;
11: Set t← t+ 1;
12: end while

Hence, the weight vector is updated at each iteration by
the recursion in (15) for reducing the complexity.
Up to now, the main difference here from prior works lies in
the fact that the integral (12) is approximated by a summa-
tion (13), which would require a complexity of O(M2Q) to
be able to synthesize narrowband signal’s power accurately.
However, in the computation of (14) and in the final proposed
algorithm in (15), (19) and (22) (see below), we avoid actu-
ally computing expensive O(M2) outer products, so our al-
gorithm requires O(MQ) for steps (2,4,5,7,8 and 10) while
steps in (6 and 9) needs O(M) complexity. Since this algo-
rithm iterates t times to finding the best step-size, µt. Hence,
the final computational complexity of the proposed method
is only O(tMQ) while computing the beamformer without
need for the inverse of the NPIC matrix.

3.4. MEPS Estimation Using CG

In order to compute (13) efficiently, we can use an iterative
solution to the linear system, and take advantage of the struc-
ture of the SCM, R̂. We write the term v = R̂

−1
u1 in (13)

and consider the optimization problem

min
v

vHR̂ v s.t. vHu1 = 1, (16)

The corresponding CG algorithm is described by

v(t+ 1) = v(t) + ξ(u1 − R̂v(t)), (17)

where ξ is a step size. Now, substituting the expression for R̂
and multiplying by v(t) yields

R̂v(t) =
1

K

K∑
t=1

x(t)
(

xH(t)v(t)
)
, (18)

By substituting (18) into (17), we obtain

v(t+ 1) = v(t) + ξ
(

u1 −
K∑
t=1

x(t)
(xH(t)v(t)

K

))
. (19)

In (17), the step size, ξ, should satisfy 0 < ξ < 2/λmax (λmax

is the largest eigenvalue of R̂), with fastest convergence oc-
curring for ξ ≈ 1/λmax. Since computing λmax requires
O(M3) operations, it is more efficient to use an approxima-
tion. Assume that λ is an eigenvalue of R̂ with respect to the
eigenvalue z, so we can write

λz = R̂z =
1

K

K∑
t=1

x(t)
(

xH(t)z
)
. (20)

Taking norm in both sides

| λ |‖ z ‖= 1

K
‖

K∑
t=1

x(t)xH(t)z ‖

6
1

K

K∑
t=1

‖ x(t) ‖| xH(t)z |6 1

K

K∑
t=1

‖ x(t) ‖2‖ z ‖, (21)

Hence | λ |6 (1/K)
∑K
t=1 ‖ x(t) ‖2. An approximation to

the step size, ξ, is given by

ξ ≈ K∑K
t=1 ‖ x(t) ‖2

. (22)

The computational complexity of the proposed MEPS-NPIC-
CG isO(tMQ). The solution of the quadratically constrained
quadratic programming (QCQP) problem in [11] has com-
plexity of at least O(M3.5 + M2Q), while the beamformer
in [8] has a complexity of O(KM) + O(M3) and the re-
constructed NPIC matrices in [13] and [16] have a complex-
ity of O(M3). Also, the cost of the beamformer in [22] is
O(max(M2Q,M3.5)).
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Fig. 1. SINR vs SNR a) Incoherent Local Scattering b)
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4. SIMULATIONS

In this section, a uniform linear array of M = 10 omnidi-
rectional sensors and half-wavelength interelement spacing
is considered. Two interferers and a DS impinge on the
sensor array with incident angles 50o, 20o and 5o, respec-
tively. The interference-plus-noise ratio (INR) for each in-
terferer is assumed 30 dB in each sensor. The additive noise
is modeled as spatially white Gaussian, where 100 Monte
Carlo runs are performed for each simulation. When we
examine the performance of the output SINR versus input
SNR, the number of snapshots is set to K = 30 whereas
for the performance comparison of the adaptive beamform-
ers versus the number of snapshots the SNR is set to 20
dB. The proposed MEPS-NPIC-CG method is compared
with LOCSME [13], the modified projection beamformer
(Shrinkage) [8], the reconstruction-estimation based beam-
former (Rec-Est) [11], the SPSS beamformer in [16], the
algorithm based on noise-plus-interference covariance matrix
reconstruction and SV estimation (INC-SV), [22] and the
beamformer (SV-Est) in [23]. The angular sector of the DS
is set to Θ = [−1◦, 11◦] while the interference angular sector
is Θ̄ = [−90◦,−1◦) ∪ (11◦, 90◦]. For the proposed MEPS-
NPIC-CG beamformer, tol = 0.001, t = 7, S = 10 and
Q = 90 are used and the bound for the beamformer in [22] is
set as ε =

√
0.1. To solve all convex optimization problems

the Matlab CVX toolbox [24] is used.
In the first scenario, the desired signal SV is distorted

by incoherent local scattering effects so that the actual SV
is assumed to have a time-varying signature and the SV is
expressed as a(t) = s0(t)a(θ0) +

∑4
p=1 sp(t)a(θp) where

s0(t) and sp(t) (p = 1, 2, 3, 4) are independently and identi-
cally distributed (i.i.d.) zero-mean complex Gaussian random
variables independently drawn from a random generator. The
angles θp (p = 0, 1, 2, 3, 4) are drawn independently in each
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Fig. 2. SINR vs Snapshots a) Incoherent Local Scattering b)
Wavefront Distortion

simulation run from a uniform generator with mean 5◦ and
standard deviation 2◦. Note that θp changes from run to run
while remains fixed from snapshot to snapshot. At the same
time, the random variables s0(t) and sp(t) change not only
from run to run but also from snapshot to snapshot. Figs. 1(a)
and Figs. 2(a) depict the output SINR of the tested beamform-
ers versus the SNR and snapshots under the incoherent local
scattering case. It is demonstrated that the MEPS-NPIC-SG
has high accuracy SINR for all snapshots. Also, it is seen that
the performance of the proposed (MEPS-NPIC-SG) method
is same as our method given in [18] while outperforms the
other beamformers.

In the second scenario, we consider the situation when the
signal SV is distorted by wave propagation effects in an in-
homogeneous medium. Specifically, independent-increment
phase distortions are accumulated by the components of the
presumed SV. It is assumed that the phase increments remain
fixed in each simulation run and are independently chosen
from a Gaussian random generator with zero mean and stan-
dard deviation 0.07. Figs. 1(b) and Figs. 2(b) show the output
SINR of the beamformers versus the input SNR for snapshot.
Similar to the previous scenario, the proposed beamformer
significantly outperforms other beamformers due to its ability
to reconstruct the NPIC matrix and estimate the desired signal
SV with higher accuracy than other methods.

5. CONCLUSION

A low-complexity approach to robust adaptive beamforming
based on estimated weight vector through CG recursions,
named MEPS-NPIC-CG, has been proposed. The computed
weight vector is exploited to reconstruct accurate NPIC ma-
trix without requiring matrix inversions. Simulations demon-
strate that MEPS-NPIC-CG can offer a superior performance
to recently reported robust adaptive beamforming methods.
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