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ABSTRACT

In this study, we propose comparator network-aided MIMO systems
with 1-bit ADCs at the receiver. During the uplink transmission,
the received signals simultaneously flow into the 1-bit ADCs and
the comparator network, where the latter is composed of several
simple comparators and each comparator has binary output. Two
comparator networks are proposed, namely, fully and partially con-
nected networks. Based on the proposed system design, we develop
a low-resolution aware linear minimum mean-squared error detector
according to the Bussgang theorem. We also devise a greedy search-
based partially connected network that can use much less compara-
tors to approach the performance of the fully connected network.
Simulation results show that by taking into account the additional
comparator network the system can outperform the existing low-
resolution detection scheme in terms of bit error rate.

Index Terms— MIMO, 1-bit ADCs, comparator networks,
Bussgang theorem, Greedy search

1. INTRODUCTION

As a promising technical candidate for next generation cellular
systems, large-scale multiple-input multiple-output (MIMO) sys-
tems have attracted much attention due to its large improvement
in spectral efficiency [1]. However, deploying such a large num-
ber of antennas at the base station (BS) will bring some practical
challenges, such as hardware cost and power consumption. For
example, the power consumption of analog-to-digital converters
(ADCs) PADC scales exponentially in the number of quantization
bits B, i.e., PADC ∈ 2B [2]. The use of current high-speed and high-
resolution ADCs (8-12 bits) for each antenna array would become
a great burden to the BS. Consequently, the use of antennas with
low-resolution ADCs (1-3 bits) are promoted as a solution to this
problem [3–5].

Specifically, 1-bit ADCs are of interest in large-scale MIMO
systems since they demand very low power and obviate the use of
automatic gain control (AGC) [6]. Several studies have investigated
1-bit ADCs in such systems. The works in [7–9] have proposed
algorithms to estimate the channel statistics based on the coarsely
quantized signal, such as the maximum a-posteriori probability
(MAP), recursive least squares (RLS) and approximate message
passing (AMP) algorithm. While performing the signal detection, it-
erative detection and decoding (IDD) [10] and sphere decoding [11]
are proposed to estimate the transmitted symbols sent by the users.
Furthermore, the works in [12–14] have applied temporal oversam-
pling techniques into the system to achieve better estimation and
detection performance. Recently, the authors in [15, 16] have used

spatial oversampling by employing a one-bit Σ∆ sampling scheme.
Simulation results have shown large performance gains on channel
estimation and signal detection offered by the proposed approach.
Unlike the spatial Σ∆ approach in [15, 16] which relies on spatial
oversampling, the method in the present study is appropriate for
all MIMO channels with coarse quantization at the receiver. More-
over, the proposed method does not imply feedback loops and is
compatible with the established Bussgang decomposition approach.

Different from prior works on 1-bit MIMO systems, in this work
we propose a comparator network based system design, where the
received signals simultaneously flow into the comparator network
and the 1-bit ADCs. Both of them have binary outputs. The com-
parator network consists of simple comparator circuits which com-
pare different signals from different antennas elements. The com-
parator network can be interpreted as an extension of the channel
by linear combinations of its outputs with a subsequent quantization
step. Different to the case where the antenna output signals are sam-
pled with full resolution in amplitude these linear combinations can
contain useful information which can aid the detection process. For
the comparator network aided receiver, we develop a low-resolution
aware (LRA) linear minimum mean squared error (LMMSE) detec-
tor based on the Bussgang theorem. Two types of comparator net-
works are considered, fully and partially connected, where the latter
is based on a greedy search. Numerical results confirm that the BER
can be significantly reduced when utilizing a comparator network.

The rest of this paper is organized as follows: Section 2 shows
the system model and gives the insight of the comparator network.
Section 3 and Section 4 derives the linear detector for the proposed
system and illustrates the design algorithm for the comparator matrix
B′, respectively. In Section 5, the numerical results are presented
and Section 6 concludes the paper.

Throughout the paper the following notations are used: the bold
upper and lower case such as A and a denote matrices and vectors,
respectively. In is a n× n identity matrix. Additionally, diag(A) is
a diagonal matrix only containing the diagonal elements of A. The
vector or matrix transpose and conjugate transpose are represented
by (·)T and (·)H . sin−1(·) denotes the inverse of sine function.

2. SYSTEM MODEL

The overall system model is illustrated with blocks in Fig. 1, where
the received signal y for the uplink single-cell MIMO system with
Nt single-antenna users and Nr receive antennas is written as

y = Hx + n. (1)
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Fig. 1: System model of multi-user MIMO with 1-bit ADCs and an additional comparator network

The vector x ∈ CNt×1 contains identically independent distributed
(IID) transmit symbols, each of which has unit power. H ∈ CNr×Nt
is the channel matrix and n ∈ CNr×1 is the noise vector. Using the
transformation from a complex into a real-valued system, we obtain[

R{y}
I{y}

]
=

[
R{H} −I{H}
I{H} R{H}

] [
R{x}
I{x}

]
+

[
R{n}
I{n}

]
, (2)

where R{·} and I{·} are functions to get the real and imaginary
part, respectively. The formula in (2) can be reformulated as

yR = HRxR + nR. (3)

The received signal is then sent to the 1-bit ADCs and the com-
parator network (shown in Fig. 2). Each comparator compares two
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Fig. 2: Insight of the comparator network

received signals and quantizes the difference as {±1} based on a
threshold. LettingQ(·) represent the 1-bit quantization, the input of
the detector is then

zRQ = Q
([

yR

B′yR

])
= Q

([
I2Nr
B′

]
yR
)
, (4)

where B′ ∈ Rα×2Nr represents the comparator network and has the
form as

B′ =


1 −1 0 0 · · · 0
1 0 −1 0 · · · 0
1 0 0 −1 · · · 0
...

...
...

...
...

...
0 0 0 0 · · · −1

 . (5)

In each row of B′, there is only one pair of 1 and -1 and the remain-
ing entries are zeros. With B =

[
I2Nr ;B′

]
, (4) reads as

zRQ = Q
(
ByR

)
. (6)

The novelty of the present study is that 1-bit samples and the com-
parator output signals, described by Q(B′y

R
), are jointly used for

the detection process.

3. LINEAR DETECTION

Based on the proposed system model in (6), the corresponding lin-
ear receiver is derived to reconstruct the transmitted symbols. The
optimization problem for getting the optimal linear receiver is for-
mulated as

WLRA-MMSE = arg min
W

E

[∣∣∣∣∣∣xR −WHzRQ

∣∣∣∣∣∣2
2

]
, (7)

where W ∈ R(2Nr+α)×2Nt . The solution is

WLRA-MMSE = C−1

zRQ
CzRQxR , (8)

where the involved covariance matrix CzRQ
is calculated as [17]

CzRQ
=

2

π
sin−1 (KR{CzR}K) ,with K = diag(CzR)−

1
2 (9)

and the cross-correlation matrix CzRQxR is based on the Bussgang
theorem [18]

CzRQxR =

√
2

π
KCzRxR =

√
2

π

1

2
KBHR. (10)

The auto-correlation of zR is

CzR =
1

2
BHRHRHBT +

σ2
n

2
BBT . (11)

4. DESIGN OF COMPARATOR NETWORK

In this section, the matrix design of the comparator network in (5) is
illustrated. Two types of networks are considered, namely, fully and
partially connected networks.



4.1. Fully Connected Network

In this network, every two of the received signals are compared, so
that there are overall αf = C2

2Nr = Nr(2Nr−1) comparators. For
instance, if a system is withNr = 2 receive antennas, αf = C2

4 = 6
comparators are needed in this network and the corresponding ma-
trix B′ is described by

B′ =


1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1

 . (12)

4.2. Partially Connected Network

The main drawback of the fully connected network is the massive use
of the comparators., where the number of comparators αf is propor-
tional to the square of the number of receive antennasNr . For large-
scale MIMO system, it will need much more comparators in the fully
connected network. In order to increase the usage efficiency of the
comparators, the partially connected network is proposed, where the
number of utilized comparators αp is only a small fraction of what
is required for the fully connected network.

In this subsection, two types of network design are considered,
random and greedy search based. The former is to randomly select
αp out of αf (αp << αf ) comparators, while the selection criterion
of the latter is the mean square error (MSE). The proposed greedy
search algorithm implies that in each search cycle, the comparator
configuration with the highest MSE reduction is selected. The de-
tailed process is summarized in Algorithm 1.

Algorithm 1 MMSE based Greedy Search

1: Find the fully connected network B′ in (12) and get the number of rows,
defined by Rmax

2: Extract the first αp rows of B′, defined by B′αp
3: Constitute B in (6) and calculate W in (8)
4: Compute the MSE with E

[∣∣∣∣xR −WHzRQ
∣∣∣∣2
2

]
, defined by lmin

5: for i = 1 : αp do
6: Take the ith row of B′αp and freeze the other αp − 1 rows
7: for j = 1 : Rmax do
8: if the jth row of B′ is already in B′αp

then
9: j = j + 1

10: else
11: Replace the ith row of B′αp with the jth row of B′

12: Constitute B and calculate W
13: Compute the MSE value, defined by l
14: if l < lmin then
15: lmin = l
16: Update B′αp
17: end if
18: end if
19: end for
20: end for

5. NUMERICAL RESULTS

In this section, an uplink single-cell 1-bit MIMO system with Nt =
2 is considered. The modulation scheme is Quadrature Phase-Shift
Keying (QPSK) and the SNR is defined as 10 log( 1

σ2
n

). The BER
performance plots are obtained by taking the average of 2000 differ-

ent channel matrices, noise and symbol vectors. While making the
signal detection, the LRA-MMSE detector is applied in the system.

The BER performance of fully and partially connected networks
under perfect channel state information (CSI) are shown in Fig. 3,
where the system with fully connected network achieves the best
BER performance with the cost of a large number of comparators.
In the partially connected networks, the MMSE based greedy search
outperforms the random selection approach especially at high SNR,
where the error floor is eliminated. A surprising observation is that
the greedy search approach has almost the same BER performance
as the fully connected method but with much less comparators. This
shows great advantages of the greedy search based partially con-
nected network. However, also the approach with the compara-
tor network using random selected inputs is beneficial in terms of
BER. While making comparison with the approach without addi-
tional comparator network, it can be seen that by adding extra 20
comparators the performance gain is significant and the error floor
goes down largely.
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Fig. 3: BER performance in 2× 10 MIMO systems.

However, it should be mentioned that although the greedy search
approach yields comparable good BER performance and less usage
of the comparators, the computational cost is the highest among the
approaches listed in Fig. 3 due to its iterative search for the least
MSE values. The computational complexity of different approaches
is summarized in Table 1, where O(·) is the big O notation. As the
example showed in Fig. 3, the required computational (arithmetic
operations) and hardware costs (additional comparators) are approx-
imately calculated in Table 2.

6. CONCLUSIONS

In this study, comparator network based 1-bit MIMO systems are
proposed. The additional comparator network provides additional
information about the received signal which can be used to reduce
the BER performance with only a slight increase in hardware cost
and required computational complexity. Two types of comparator
networks are proposed, fully and partially connected networks. Sim-
ulation results show that the proposed partially connected networks,
especially the MMSE based greedy search approach, require less
comparators while introducing small performance degradation com-
pared with the proposed fully connected networks. As a future re-
search topic it would be interesting to develop a search algorithm for



Table 1: Computational complexity

Approach Network Design LRA-MMSE Detection

No network - O((2Nr)
3 + 2Nt(2Nr)

2 + 4NrNt)

Full connection - O((2Nr + αf )
3 + 2Nt(2Nr + αf )

2 + 2Nt(2Nr + αf ))

MMSE based Greedy search O(αp(Rmax − αp)(2Nr + αp)
3) O((2Nr + αp)

3 + 2Nt(2Nr + αp)
2 + 2Nt(2Nr + αp))

Random selection - O((2Nr + αp)
3 + 2Nt(2Nr + αp)

2 + 2Nt(2Nr + αp))

Table 2: Computational cost and hardware costs in terms of additional com-
parators in Fig. 3

Approach Computational Cost Hardware Cost
No network O(9680) -

Full connection O(9438240) 190
MMSE based Greedy search O(217670560) 20

Random selection O(70560) 20

the design of the comparator network with low computational cost.
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