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Abstract—Software-defined wireless sensor networks have
attracted considerable attention in recent years as they sim-
plify the network management and provide the framework
to automate infrastructure sharing. On the other hand, the
centralization and planes’ separation can turn SDNs vulnerable
to new types of denial of service attacks. Existing intrusion
detection approaches are not in general suitable for restricted
networks or do not achieve optimal detection rates. This work
aims at fulfilling both requirements by using a new lightweight,
multimetric, online change point detector to monitor perfor-
mance metrics that are impacted when the network is under
attack. There are two major novelties in the proposed detector
referring to previous works: first, we move to a purely online
detector, secondly, we monitor in parallel multiple metrics,
increasing the detection vector space to different types of attack.
Our tests show that intrusion detection monitoring control
overhead and data packets delivery rate in a SDWSN results
in enhanced detection rates over 96% in all topologies and
levels of attacks. We finally show that with a high probability
(exceeding 89% in all cases) it is possible to identify the “type”
of the attack.

Index Terms—Intrusion detection, software-defined network-
ing, wireless sensor networks

I. INTRODUCTION

Software-defined wireless sensor networks (SDWSN)
emerged from the application of the software-defined net-
working (SDN) paradigm in wireless sensor networks
(WSN). The objective was to use SDN characteristics to
leverage solutions for WSN challenges, in particular concern-
ing flexibility and resource reuse [1]. Conversely, the SDN
centralization and the planes’ separation turn the network
vulnerable to new security threats, mainly by those attacks
targeting the SDN controller [2], [3].

SDWSNs inherit the vulnerabilities of SDNs, and, more-
over, they are prone to novel types of attacks that are specific
to SDWSNs and are related to their constraints in terms of
resources. An example, the low storage capacity of SDWSN
devices limits the memory that can be assigned for flow
tables and buffers. This constraint turns the network prone to
saturation attacks. Also, SDWSN nodes typically operate at
low rates and with limited processing power. This means that
a saturation attack can also result in a denial of service (DoS)
attack, e.g., the gateway between the SDN controller and the
WSN has a radio module of limited bandwidth, rendering it
a weak link even when the controller has enough resources
to overcome an attack [1].

One challenge for SDWSN security is to fine-tune SDN
security solutions accounting for the resource constraints of
SDWSNs, a topic that has already attracted considerable

attention in the literature in Internet of things (IoT) and
WSN networks using SDNs. However, current security pro-
posals for restricted SDN-based networks show high attack
detection rates (over 90%) only in small topologies, imple-
mented and tested in environments not suitable for restricted
networks (e.g., using OpenFlow). Moreover, these proposals
lack mechanisms for identifying the type of the attack, which
are necessary to implement mitigation strategies.

To fill this gap, the main contribution of this work is
the proposal of an intrusion / DDoS attack detector that
is suitable for constrained SDWSNs, achieving very high
detection rates, exceeding in all of the investigated scenarios
96% and in some of them (the most intense attacks) reaching
100%. A second important advantage of our solution is that
it provides a probabilistic identification of the “type” of the
attack. To reach these targets, we have built a multimetric
online detector, monitoring in parallel both the data packets
delivery rate and the control packets overhead, using two in-
dependent change point (CP) detectors of O(N) complexity,
where N is the length of the observed data, which can be
as sort as N = 200 samples. Furthermore, we increased the
detector output space by providing multiple options between
the detection rate and the speed of detection. Our results
illustrate the trade-off between the detection accuracy and
the agility of the detector.

II. RELATED WORK

In [4], an SDN-based IoT framework with security support
was proposed, developed for OpenFlow – which limits its use
in networks composed of constrained nodes – while results
were presented in networks with only five nodes. In [5], a
distributed DoS (DDoS) detector was proposed, monitoring
the difference of packets received by the controller using co-
sine similarity. This proposal is based only on the controller
view, which could limit the types of attack it can detect. In
[6], a SDWSN trust management and routing mechanism was
proposed. The focus of this contribution was on identifying
selective forwarding attacks and new flow requests. Their re-
sults showed attack detection rates between 80%-90% when
10% of nodes were attackers. In [7], a multilayer security
framework using authentication and intrusion detection based
on the difference of the residual energy of the nodes was
developed. Their multilayer approach detects different types
of attacks but at the cost of a reduced in detection rate
(around 87%).

The principal shortcoming of these previous works is that
high detection rates, close to 100%, were only achieved in978-1-7281-8903-1/20/$31.00 ©2020 IEEE



very small networks using OpenFlow, which might not be
suitable for restricted networks. A second shortcoming is the
lack of mechanisms to identify the type of the attack. This
information is paramount to implement mitigation strategies.
The present study builds upon our previous works in [8]
and [9]. In the first work [8] we analyzed the impact of
different types of attacks on various performance metrics and
identified the data packet delivery and the control overhead
rates as the most impacted. In [9] on the other hand, we
proposed a universal CP DDoS detector. In the present, we
move to an entirely online multimetric CP detector, which
uses two CP detectors independently optimized for different
types of attack. This strategy allow us to obtain high detection
rates for different attacks in topologies up to 100 nodes,
and, more importantly, to identify the type of the attack
we are detecting. In addition, our proposal is suitable for
restricted devices because the processing overhead lays on
the controller

III. PROPOSED ONLINE DETECTOR

Our previous work [8] provided valuable insight regarding
the impact of (i) the false data flow forwarding attack, dubbed
as FDFF, in which a malicious node sends data packets to
its neighbors with unknown flows, and, (ii) false neighbor
information attack, dubbed as FNI, in which a malicious node
modifies neighborhood report packets in their route before
reaching the controller. It was shown that FDFF attacks
induce substantial changes in mean control packet rates while
FNI attacks induce important changes in mean data packets
delivery rates. Building on this analysis, we formulate the
attack detection problem as a hypothesis test, examining
whether a change has occurred in the mean value of the time
series observed for these two metrics. Next, we present the
online CP algorithm that was implemented.

We employ a cumulative sum (CUSUM) based algorithm
for the detection of a change in the mean value of a time
series, this choice allows us to alleviate the need for any
parametric model with respect to the impact of the attack
[9]. There are two major novelties in the proposed detector
in this work with respect to the one presented in [9]: first, we
move to a purely online detector, unlike [9] in which a hybrid
offline-online algorithm was presented; secondly, we monitor
in parallel multiple metrics, increasing the detection vector
space to different types of attack and provide a probabilistic
identification of the type of the attack, which to the best of
our knowledge breaks new ground.

We begin with a short description of the online CP
algorithm. Let {Xn : n ∈ N} be the time series of the metric
monitored. Using Wold’s theorem we can assume that, for
X1, ..., XN , each sample can be expressed as Xn = µn+Yn,
where {µn, n ∈ N} is the mean of the time series and
{Yn : n ∈ N} is a random zero mean term, so that we
can rewrite Xn as:

Xn =

{
µ+ Yn, n = 1, . . . ,m+ k∗ − 1

µ+ Yn + I, n = m+ k∗, . . .
(1)

where k∗ ∈ N∗ represents the unknown time of change and
µ, µ + I ∈ R represent the mean values before and after
k∗, respectively. In the present we assume a period of no

change in the mean of at least m samples, i.e., during the
first m samples of our observation there is no change so that
µ1 = . . . = µm. During this period our detector “learns” in
real-time the statistics of the observed time series, and, the
mean value in particular. We note that m can be kept small,
as discussed in Section IV. Finally, the statistical hypothesis
test is articulated as,

H0 : I = 0

H1 : I 6= 0.
(2)

The online CP detector is a stopping time stochastic
process defined as:

τ(m) =

{
min{l ∈ N : |TS(m, l)|> F (m, l)}
∞, otherwise

. (3)

where TS(m, l) is the detector statistic, F (m, l) is the
detection threshold defined below and l is the monitoring
window (i.e., the window in which we perform the hypothesis
test). The CP detector has the following properties:

lim
m→∞

P{τm <∞|H0} = 1− α, (4)

ensuring that the probability of false alarm is asymptotically
bounded by 1− α ∈ (0, 1), and,

lim
m→∞

P{τm <∞|H1} = 1, (5)

ensuring that under H1 the asymptotic power is unity. Under
these conditions, F (m, l) is defined as,

F (m, l) = cagγ(m, l), (6)

where ca is the critical value determined and gγ is the weight
function defined as:

gγ(m, l) =
√
m

(
1 +

l

m

)(
l

l +m

)γ
, (7)

where the sensitivity parameter γ ∈ [0, 1/2). The online
algorithm uses the standard CUSUM detector, given by:

Γ(m, l) =
1

ω̂m

(
m+l∑
i=m+1

Xi −
l

m

m∑
i=1

Xi

)
(8)

with ω̂m denoting the asymptotic variance, that captures the
serial dependence between observations.

The corresponding threshold is FΓ(m, l) = cΓagγ(m, l)
and the critical value are defined as:

lim
m→∞

P{τm<∞}= lim
m→∞

P

{
1

ω̂m
sup

16l6∞

|Γ(m, l)|
gγ(m, l)

> cΓa

}
= 1− α. (9)

Summarizing, the overall algorithm has 3 main steps:
• Step 1: define the values of the quantities m, γ and the

confidence level α and set l.
• Step 2: after collecting m samples of the metric, Γ(m, l)

(8) and the weight function in (7) are calculated for
every l on the monitoring period to then apply (9).

• If a CP is detected, the online process stops. Conversely,
if the period l ends, a new monitoring period is defined.



IV. EXPERIMENTAL SETUP

We generated a dataset comprising simulations of 240
FNI attacks and 240 FDFF attacks and recorded the data
packet delivery and control overhead rate time series. The
full set of time series were then split in two groups; one
group for training, in order to determine the optimal values
of {m, γ} for each type of attack and each observed metric
and the other group for validation. In terms of topology, all
simulations were performed on square grids with either 36
or 100 nodes. For each topology, we varied the number of
intruders (attackers) in three proportions: 5%, 10% and 20%
of the total of nodes in the network.

We employed the CP algorithm presented in Section III to
detect changes in the delivery rate and the control packets
overhead mean rates of an SDWSN under attack, by using
two CP detectors running in parallel and each one of them
monitoring one of the two metrics. First, we executed the
algorithm on the training group varying m ∈ {100, 150, 200}
and γ ∈ {0, 0.15, 0.25, 0.35, 0.45, 0.49}. The objective was
to determine the combination of parameters that could pro-
vide the best detection performance for each type of attack
(FDFF or FNI types) regardless of the number of intruders.
For the FDFF attack we identified the optimal {m, γ} to
detect changes in the control overhead time series, while in
the FNI attack we identified the optimal {m, γ} to identify
CP in the data packets delivery rate time series.

Furthermore, we added flexibility in the detection by
introducing a “detection score” metric to capture the relative
importance that is given to the detection rate (DR) versus
the detection speed (captured by the median of samples
required to detect the attack). The DR is defined as the
ratio of successfully detected attacks over the total number
of attacks. The detection time median, DTM , is the median
of the number of samples required to detect the attack. The
proposed detection score metric, PDS , is defined as:

PDS(A,B) = A(1− S) +B(DR), A+B = 1, (10)

where S = DTM
l and l is the number of sam-

ples monitored after the attack starts. A and B are
constants determining the relative weight of each term.
In our tests we used 5 combinations, (A,B) ∈
{(1, 0), (0.8, 0.2), (0.5, 0.5), (0.2, 0.8), (0, 1)} and recorded
the results when giving more weight to the speed of detection
(A > B) versus the detection rate (A < B).

During validation, we executed in parallel two CP algo-
rithms, the first one monitoring the control packets overhead
and the second one the data packets delivery rates of the
validation set. The validation set comprises both FDFF and
FNI attack simulations, all possible topologies and attack
intensity levels, with FDFF attacks mounting for 50% of
the whole set. The two parallel CP detectors were optimized
separately during the training, i.e., in the validation we used
the optimal pairs (m, γ) identified for each (A,B) in order
to maximize the PDS(A,B) under either an FDFF or an
FNI attack. Whenever either CP was triggered, we stopped
the detection, declared an attack, and, also, made a guess
regarding the type of the attack. If the CP monitoring the
control overhead was triggered first, we declared a FDFF
type of attack, alternatively, if the CP monitoring the data

packet delivery rate was triggered first we declared a FNI
type of attack.

The SDWSN implementation used IT-SDN, without
changing the default configuration [10], and the simulations
were performed using the COOJA simulator [11], emulating
sky motes. The sensor nodes were programmed to transmit
one data packet every 30 seconds and one management
packet every 2 minutes, both with payload of 10 bytes. The
data packets contained the application information and the
management packets contained the information required by
the network management plane [12].

The data packets delivery rate and the control packets
overhead were observed every two minutes, considering the
exchange of messages in the whole network during this
window of time. The delivery rate was calculated by dividing
the number of data packets successfully received by the
number of data packets sent. The control packets overhead
was quantified as the number of control packets sent. Since
we took samples every two minutes, we decided to run each
single simulation for 10 hours. During the first 8 hours the
network operated normally (i.e., for 240 samples there was
no change), then the attack was triggered. This imposed a
bound m < 240.

V. RESULTS AND ANALYSIS

Our analysis is separated according to the dataset groups.
In Section V-A we present and analyze the result from the
training dataset. In Section V-B we show and analyze the
results obtained from the validation dataset.

A. Training dataset analysis

We grouped the results in three passes regarding α, the
attack type, and the metric monitored. We investigated sce-
narios with α ∈ {0.90, 0.95, 0.99}. For each α, we split the
results by attack type and then sorted them according to the
metric monitored. We calculated the average detection score
PDS for all topologies, attack scenarios and combinations of
m and γ. An interesting result was that in 90% of all cases
PDS was maximized when using m = 200, making this a
universally optimal choice.

The next step was to choose the values of γ that maximized
PDS for each monitoring metric and attack. The results in
[9] suggested that, in terms of detection rate and samples
required to detect the attack, the detection performance of
FNI attacks was better when monitoring the data packets
delivery rate than when monitoring the control overhead.
Conversely, the detection performance of FDFF attacks was
better when monitoring the control overhead. From this,
we decided that γ should be chosen for each CP detector
separately to maximize the detection score.

Fig. 1 shows the average value of PDS as a function of
γ and α for the case of the FDFF attack. In Fig. 1a we
show that for A = 1 (i.e., prioritizing faster detection) the
higher results of PDS were obtained for γ = {0.35, 0.45}.
In the case where A = B = 0.5, PDS was maximized
when γ = {0.25, 0.35}. And lastly, for B = 1 (i.e.,
prioritizing the detection rate), the best results were obtained
for γ = {0, 0.15, 0.25}. What we observed is that there is
a clear relation between the value of γ and the detection
performance; using higher values of γ we could expect a



TABLE I: γ that maximizes PDS

PDSPDSPDS
γγγ

0.1 0.05 0.01
Best γ for control overhead CP detector

A = 1 and B = 0 0.45 0.45 0.45
A = 0.8 and B = 0.2 0.35 0.35 0.45
A = 0.5 and B = 0.5 0.25 0.35 0.45
A = 0.2 and B = 0.8 0.25 0.25 0.35
A = 0 and B = 1 0 0 0

Best γ for delivery rate CP detector
A = 1 and B = 0 0.45 0.45 0.45
A = 0.8 and B = 0.2 0 0.15 0.15
A = 0.5 and B = 0.5 0 0 0.15
A = 0.2 and B = 0.8 0 0 0
A = 0 and B = 1 0 0 0

faster response while using lower values we could expect
higher accuracy in the detection.

Then, Fig. 2 shows of the metric PDS for the FNI attack.
In this case, the results were not as clear-cut as we observed
for the FDFF attack. However, as shown in Fig. 2a, we could
expect faster detection when using higher values of γ; and as
shown in Fig. 2c, we could expect more accurate detection
when using lower values in γ. The main difference with
respect to the results obtained for the FDFF attack was when
calculating PDS for A = B = 0.5. In this case the results
showed a behavior similar to the behavior when B = 1. One
reason for this, and the one for which we have more evidence,
was that the DTM behavior when detecting FNI attack was
flatter than when detecting FDFF attack, thus the changes in
the detection rate had more influence in the metric PDS . We
can see this comparing Figures 1a and 2a on their extreme
values. In Table I we show the values of γ that maximize
PDS . In cases where more than one values provided the same
or very comparable results, we chose one of them arbitrarily.

B. Validation dataset results analysis

In this subsection we analyze the performance of the CP
detectors running on the second group of the dataset, using
the values of m and γ that maximize PDS . For this analysis,
we set two detectors running simultaneously, one detector
monitoring the control overhead and the other monitoring the
data packets delivery rate. This gave us the opportunity to test
the hypothesis in [9] about the possibility of identifying the
type of the attack based on the first detector triggered.

To test this, we counted all the events where the attacks
were correctly detected and classified them according to
the CP detector that was triggered first. From these results,
we calculated the probability of the attacks being detected
first by the control overhead CP detector or by the data
packets delivery rate CP detector. As shown in Fig. 3, in
the case of the FDFF attack, the probability of the detector
monitoring the control overhead is triggered first happens
with a probability between 89% and 98%. In case of the FNI
attack, the probability that the detector monitoring the data
packets delivery rate triggers the alarm first is interestingly
100%. These results show that there is evidence to prove
the conjecture drawn up in our previous work [9] about the
relation metric / attack.

Fig. 5 depicts DR and 1−S when the network was under
FDFF attack. We observed that in terms of detection rate
(Fig. 5a), for four out of five configurations we achieved
DR > α, and, only for A = 1 the DR did not reach the
target α. Then, in terms of 1 − S, the results showed that
we obtained the fastest detection when A = 1, as intuitively
expected by inspecting Figs. 5 and 6. Considering both DR
and S, the results for A = 0.8 provided the best trade off.

In the case of FNI attack, in Fig. 6 the DR observed was
not as good as the results obtained in the FDFF attack. For
the case of α = 0.95 only for two configurations DR > α,
for A = 0 and A = 0.2, while for α = 0.99 none of them
achieved it. The difference in the detection rate for FDFF
and FNI attacks was already noticed in the training analysis.
Comparing Figs. 1c and 2c, the values of PDS when A = 0
(i.e., considering only the detection rate) have a difference
around 0.04 for γ = 0 and around 0.10 for γ = 0.49. In
terms of the time required to detect the attack, both obtained
similar results. Thus, considering both detection rate and time
required to detect the attack, when A = 0 and A = 0.2 the
detection rate was equal or over α, for α = {0.90, 0.95},
and 1 − S was higher than 0.87. Diversely, when A = 1
the metric 1−S obtained the highest results (i.e., the fastest
detection) but the DR dropped below 0.90.

Finally, we analyzed the detection performance irrespec-
tive of the type of the attack. Our objective was to simulate a
real scenario in which both CP detectors run simultaneously
in a network prone to both attacks. In Figs. 7a and 7b we
show DR and 1− S, respectively. Our results show that the
proposed multimetric online intrusion detector was able to
reach a detection rate equal or over α when A = {0, 0.2}.
This means, to overall guarantee a high DR the detection
score should be evaluated with A > B. If we compare the
value of 1− S for A = 0 and A = 1, the highest difference
is about 0.05 when α = 0.90, which translates to a lag of 3
samples in the time series (see Section IV). This means, if
we choose to configure the algorithm to maximize DR, the
detector is triggered 3 samples later on average. Conversely,
if we choose to configure the algorithm for fastest detection,
the DR can fall below 90%.

Summarizing, we chose the pairs of (m, γ) that maximized
the detection score PDS . Our results showed that the metric
PDS was maximized when setting m = 200 while the
optimal value of γ depended on the relative weight given
to A and B. When using γ = {0.45, 0.49} we reduced the
time to detect the attack but this had an adverse effect on
the detection rate. On the other hand, when γ = {0, 0.15}
the detection rate and the time to detect the attack increased.
Then, we showed that there is a probability over 0.89 that in
case of a FDFF attack, the control overhead CP detector will
be triggered first. Conversely, in the case of a FNI attack, the
delivery rate CP detector always raised the alarm first. We
were able to detect the attack with DR > α when B > A.
On the other hand, the fastest detection was obtained when
A = 1 but with a detection rate equal or less than 0.93.

VI. CONCLUSION

We proposed a novel multimetric online intrusion detection
algorithm for SDWSNs. There are two major novelties in



(a) A = 1 and B = 0 (b) A = B = 0.5 (c) A = 0 and B = 1

Fig. 1: Metric PDS for FDFF attack

(a) A = 1 and B = 0 (b) A = B = 0.5 (c) A = 0 and B = 1

Fig. 2: Metric PDS for FNI attack

Fig. 3: Probability of control overhead CP detector being
triggered first in case of FDFF attack

the proposed detector regarding previous works: first, we
move to a purely online detector, secondly, we monitor
in parallel multiple metrics, increasing the detection vector
space to different types of attack. The proposal was tested
for two DDoS attacks simulating SDWSNs of 36 and 100
nodes monitoring their data packets delivery rate and control
overhead.

First, we executed the algorithm on a training dataset
to obtain the values of the parameters that maximized the
performance based on a detection score that captured both the
detection rate and the time required to detect the attack. The
results showed performance was maximized when m = 200.
Then, we varied the CP sensitivity parameter (γ) varying the
weight we gave to the detection rate and to the time to detect
the attack.

We tested the algorithm in a second dataset using the

Fig. 4: Probability of delivery rate CP detector being trig-
gered first in case of FNI attack

values of m and γ chosen. We showed that there is a
probability over 0.89 that in case of a FDFF attack, the
control overhead CP detector will be triggered first. On the
other hand, the delivery rate CP detector was triggered first
in all the cases the network was under a FNI attack. In terms
of detection performance the detection rate was between 0.96
and 0.99.

We were able to reach very high detection rates and also
provide with high probability a good discriminator of the
type of the attack. In future work, we would like to propose
a decentralised version of the multimetric intrusion detector
to obtain information about the attackers’ location.
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(a) Detection rate (b) 1-S

Fig. 5: Detection performance of FDFF attack

(a) Detection rate (b) 1-S

Fig. 6: Detection performance of FNI attack

(a) Detection rate (b) 1-S

Fig. 7: Detection performance regardless the type of the attack
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