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ABSTRACT

Continuous phase modulation (CPM) with 1-bit quantization at the
receiver is promising in terms of energy and spectral efficiency.
In this study, CPM waveforms with symbol durations significantly
shorter than the inverse of the signal bandwidth are proposed, termed
faster-than-Nyquist CPM. This configuration provides a better steer-
ing of zero-crossings as compared to conventional CPM. Numerical
results confirm a superior performance in terms of BER in compar-
ison with state-of-the-art methods, while having the same spectral
efficiency and a lower oversampling factor. Moreover, the new
waveform can be detected with low-complexity, which yields al-
most the same performance as using the BCJR algorithm.

Index Terms— 1-bit quantization, oversampling, continuous
phase modulation, faster-than-Nyquist signaling.

1. INTRODUCTION

Continuous phase modulation (CPM) yields spectral efficiency,
smooth phase transitions and a constant envelope [1, 2], which
allows for the use of energy efficient power amplifiers with low
dynamic range. At the receiver side, the energy consumption of
the analog-to-digital converter (ADC) scales exponentially with the
resolution in amplitude [3]. Hence, in this study a low resolution
ADC is considered, where the ADC provides only sign information
about the received signal. In order to compensate for the loss in
terms of the achievable rate, oversampling with respect to (w.r.t.)
the signal bandwidth is considered. In this context, it is shown that
oversampling yields a significant gain in terms of achievable rate for
the noiseless [4] and for the noisy channel [5].

As the information is implicitly conveyed in phase transitions of
CPM signals, resolution in time is more promising than resolution of
amplitude. CPM signals with channels with 1-bit quantization and
oversampling has been considered before in [6], where the achiev-
able rate is studied and maximized via optimization of sequences.
Later, more practical approaches were proposed in [7], where the
intermediate frequency and the waveform is considered in a geo-
metrical analysis of the phase transitions. Moreover, in [8] iterative
detection and decoding is studied for CPM signals with 1-bit quan-
tization and oversampling.

In the present study, a CPM waveform is introduced with a sym-
bol duration that is only a fraction of the symbol duration of an
equivalent CPFSK, which is promising in terms of construction of
zero-crossings. The proposed CPM waveform conveys the same in-
formation per time interval as the common CPFSK while its band-
width can be the same and even lower. Referring to the high sig-
naling rate, like it is typical for faster-than-Nyquist signaling [9],

the novel waveform is termed faster-than-Nyquist continuous phase
modulation (FTN-CPM). Numerical results confirm that the pro-
posed waveform yields a significantly reduced bit error rate (BER)
as compared to the existing methods [6, 7] with at least the same
spectral efficiency. In addition, FTN-CPM can be detected with low-
complexity and with a lower effective oversampling factor in com-
parison with the state-of-the-art methods.

The sequel is organized as follows: Section 2 defines the system
model, whereas Section 3 describes the proposed waveform. Sec-
tion 4 details the detection, including a proposed low-complexity
method. Section 5 discusses numerical results, while Section VI
shows the conclusions.

Sequences of scalars and vectors are denoted with xn =
[x1, . . . , xn]T and yn = [yT1 , . . . ,y

T
n ]T , respectively. A segment

of a sequence is given by xkk−L = [xk−L, . . . , xk]T .

2. SYSTEM MODEL

The considered system model is based on the discrete time system
model described before in [6]. Later in Section 4 the model is ex-
tended by different CPM demodulators for processing the quantized
received signal, as illustrated in Fig. 1.

2.1. CPM Modulator

The information conveying phase term of a CPM signal [1] reads

φ (t) = 2πh

∞∑
k=0

αkf(t− kTs) + ϕ0, (1)

where Ts denotes the symbol duration, h =
Kcpm
Pcpm

is the modula-
tion index, f (·) is the phase response, ϕ0 is a phase-offset and αk
represents the kth transmit symbol. For an even modulation order
Mcpm, such transmit symbols are taken from an alphabet described
by αk ∈ {±1,±3, . . . ,±(Mcpm − 1)}. In order to obtain a finite
number of phase states Kcpm and Pcpm must be relative prime posi-
tive integers. The phase response function f (·) shapes the sequence
of CPM symbols to the continuous phase signal with smooth transi-
tions. The phase response is characterized by

f(τ) =

{
0, if τ ≤ 0,
1
2
, if τ > Tcpm,

where Tcpm defines the CPM memory in terms of Lcpm = dTcpm/Tse
transmit symbols. In general, the corresponding phase trellis of (1)
is time variant, which means that the possible phase states are time-
dependent. A time invariant trellis can be constructed by tilting the
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Fig. 1: Discrete time description of the CPM system with 1-bit quantization and oversampling at the receiver
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Fig. 2: CPM trellis (a) and its tilted version (b),Mcpm = 2, h = 1/2, φ0 = 0,
Lcpm = 1 and linear phase transition

phase according to the decomposition approach in [10]. The tilt
corresponds to a frequency offset applied to the CPM signal, i.e.,
the phase term becomes ψ(t) = φ(t) + 2π∆ft, where ∆f =
h(Mcpm−1)/2Ts. In this context, Fig. 2 shows the tilted version of a
MSK signal. Taking into account the tilted trellis, a different symbol
notation xk = (αk + Mcpm − 1)/2 can be considered, which then
corresponds to the symbol alphabet X = {0, 1, . . . ,Mcpm − 1}.
The tilted CPM phase ψ(t) within one symbol interval with dura-
tion Ts, letting t = τ + kTs, is fully described by the state definition
s̃k =

[
βk−Lcpm , x

k
k−Lcpm+1

]
in terms of

ψ(τ + kTs) =
2π

Pcpm
βk−Lcpm (2)

+ 2πh

Lcpm−1∑
l=0

(2xk−l −Mcpm + 1) f(τ + lTs)

+ πh (Mcpm − 1)

(
τ

Ts
+ Lcpm − 1

)
+ ϕ0,

where the absolute phase state βk−Lcpm can be reduced to

βk−Lcpm =

Kcpm

k−Lcpm∑
l=0

xl

 mod Pcpm,

which is related to the 2π-wrapped accumulated phase contributions
of the input symbols that are prior to the CPM memory.

In the sequel a discrete time description is considered which im-
plies that the CPM phase is represented in a vector notation. The
corresponding tilted CPM phase ψ(τ + kTs) for one symbol in-
terval, i.e., 0 ≤ τ < Ts, is then discretized into MD samples,
which composes the vector denoted byψk(s̃k) = [ψ( Ts

MD
(kMD+

1)), ψ( Ts
MD

(kMD+2)), . . . , ψ(Ts(k+1))]T , whereM is the over-
sampling factor, and D is a higher resolution multiplier. The tilt of
the phase can be established in the actual communication system by
receiving at an intermediate frequency (IF). With this, we can con-
sider that different low-IF frequencies can be used, which motivates
the definition of ψIF(t) = ψ(t) + 2π nIF

Ts
t. Choosing nIF > 0 is

promising because the appearance of zero-crossings can be adjusted,
as proposed in [7]. Nevertheless, in the considered examples nIF = 0
is chosen for simplicity.

Regarding the discrete system model in Fig. 1, the CPM modu-
lator takes the input sequence xn and generates the transmit signal

√
Es
Ts
ejψk(s̃k), where Es is the symbol energy, i.e., it already takes

into account the frequency offset.

2.2. Receive filter and 1-bit quantization

The receive filter g(t) has an impulse response of length Tg . In the
discrete model for expressing a subsequence of (η + 1) oversam-
pling output symbols it is represented in a matrix form with G, as
a MD(η + 1) × MD(Lg + η + 1) Toepliz matrix, whose first
row is [gT ,0TMD(η+1)], where gT = [g(LgTs), g( Ts

MD
(LgMD −

1)), . . . , g( Ts
MD

)]. A higher sampling grid in the waveform signal,
in the noise generation and in the filtering is adopted to adequately
model the aliasing effect. This receive filtering yields an increase of
memory in the system by Lg symbols, where (Lg − 1)Ts < Tg ≤
LgTs. This motivates the definition of the overall memory in terms
of L = Lcpm + Lg .

The filtered samples are decimated to the vector zkk−η accord-
ing to the oversampling factor M , by multiplication with the D-fold
decimation matrix D, as described in equation (16) in [6], with di-
mensions M(η + 1) ×MD(η + 1). Then, the result zkk−η is 1-bit
quantized to the vector ykk−η . These operations can be represented
by the following equations

ykk−η = Q
(
zkk−η

)
= Q

(
D G

[√
Es

Ts
e
ψkk−η−Lg + nkk−η−Lg

])
, (3)

where the quantization operator Q(·) is applied element-wise. The
quantization of zk is described by yk,m = sgn(Re {zk,m}) +
jsgn(Im {zk,m}), where m denotes the oversampling index which
runs from 1 to M . The vector nkk−η−Lg contains complex zero-
mean white Gaussian noise samples with variance σ2

n = N0.

3. PROPOSED FASTER-THAN-NYQUIST CPM

As known from linear modulation schemes, a faster-than-Nyquist
signaling can yield a benefit for the design of zero-crossings [11],
which is key for channels with 1-bit quantization at the receiver. In
this section, a new subclass of CPM waveforms is introduced which
provides relatively high, signaling rate and high spectral efficiency at
the same time. Illustrated configurations of the proposed waveform
only require low-complexity at the transmitter and receiver.

In the sequel the proposed waveform is considered with the rect-
angular frequency pulse with duration Tcpm, but the extension to
pulses like raised cosine and Gaussian pulse is possible.

3.1. Proof-of-concept of Faster-than-Nyquist CPM

In this section, it is shown that CPM signals can be constructed
with significantly reduced symbol duration as compared to standard
CPFSK, which convey the same information per time interval and
occupy the same bandwidth. Because of its mathematical tractabil-
ity, Carson’s bandwidth criterion, as used in [12, 13], is considered
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Fig. 3: 8-symbol CPFSK (a) and three-symbol-period FTN-CPM (b) tilted trellises
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in this section. Following the steps in [12], the bandwidth for CPM
signals with i.u.d. input and rectangular frequency pulse reads as

Bc = h
√

(M2
cpm − 1)(3TsTcpm)−1 + T−1

cpm . (4)

As a reference, a standard CPFSK signal shall be considered, whose
parameters are indicated with ′. The reference CPFSK is fully de-
scribed by T

′
s , M

′
cpm, h

′
= 1

M
′
cpm

, T
′
cpm = T

′
s and B

′
c . Now, it is

aimed to construct a FTN-CPM signal with a shorter symbol dura-
tion Ts, such that the ratio T

′
s /Ts is an integer value, as shown in

Fig. 3. The conveyed information per time interval is equal for both

signals by definingMT
′
s /Ts

cpm = M
′
cpm. With this, the relation between

the bandwidth of the FTN-CPM signal and the reference CPFSK sig-
nal can be expressed as

Bc

B
′
c

=
T
′
s

Ts

(
h

√
M2

cpm − 1

3Tcpm/Ts
+

Ts

Tcpm

)1 +
1

M
T
′
s /Ts

cpm

√
M

2T
′
s /Ts

cpm − 1

3


−1

. (5)

For the case of predefined design parameter (T
′
s /Ts) and Mcpm, the

relation in (5) is a function of modulation index h and relative fre-
quency pulse length Tcpm/Ts. Aiming for a high spectral efficiency
for the FTN-CPM signal a low relative bandwidth (5) is promising.
An example case is illustrated for T

′
s /Ts = 3 and Mcpm = 2. As

can be seen, the bandwidth increase brought by the higher signaling
rate can be compensated by adjustment of the modulation index h
and the length of the frequency pulse Tcpm. In the sequel the FTN-
CPM waveform configurations are detailed which are promising in
the presence of 1-bit quantization at the receiver.

3.2. FTN-CPM for 1-bit quantization at the receiver

A widely used waveform design criterion for channels with 1-bit
quantization at the receiver is given by the maximization of distance

Re
{
ejψ(t)

}

Im
{
ejψ(t)

}
01
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Fig. 5: Tilted CPM constellation diagram (a) and trellis (b) of the proposed FTN-CPM
with Tcpm = Ts, h = 1/4 and φ0 = π/4

to the decision threshold [14]. By assuming that the receive filter
g(t) only marginally changes the signal phase ψ(t) at the receiver,
zero-crossings appear whenever the phase crosses integer multiples
of π

2
. Considering that sampling rate is equal to the FTN signaling

rate, the illustrated FTN-CPM phase tree on the RHS of Fig. 3 is op-
timal in terms of distance to decision threshold. The corresponding
binary FTN-CPM constellation diagram is shown in Fig. 5, which
implies that a zero-crossing conveys the transmit symbol 1 and 0
else. In order to achieve a spectral efficiency similar to the cor-
responding conventional CPFSK waveform, the length of the fre-
quency pulse Tcpm can be increased, cf. Fig. 4, where different cases
are examined in the sequel.

4. CPM DEMODULATION

This section describes two demodulation methods.

4.1. MAP Detection

The MAP decision metric for each symbol xk is given by the A
Posteriori Probability (APP) P (xk|yn). For the considered system,
approximated APPs Paux (xk|yn) can be computed via a BCJR algo-
rithm [15] that is based on an auxiliary channel law. Depending on
the receive filter, noise samples are correlated which implies depen-
dency on previous channel outputs, such that the channel law has the
form P (yk|yk−1, xn). In this case the consideration of an auxiliary
channel law W (·) is required [6], which can be described by

W (yk|y
k−1, xn) = P (yk|y

k−1
k−N , βk−L−N , x

k
k−L−N+1)

=
P (ykk−N |βk−L−N , xkk−L−N+1)

P (yk−1
k−N |βk−L−N , x

k−1
k−L−N+1)

, (6)

where the dependency on N previous channel outputs is taken into
account. With this, an extended state representation is required
which is denoted by

sk =

{
[βk−L−N+1,x

k
k−L−N+2], if L+N > 1,

[βk], if L+N = 1,
(7)

where L + N is the total memory of the system. Based on the state
notation in (7) the probabilities for the channel law (6) can be cast as
P
(
ykk−N |sk, sk−1

)
and P

(
yk−1
k−N |sk−1

)
. Its computation involve

a multivariate Gaussian integration in terms of

P
(
ykk−N |sk, sk−1

)
=

∫
zk
k−N∈Y

k
k−N

p(zkk−N |sk, sk−1)dzkk−N , (8)
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Fig. 6: Simple receive strategy: decide for 0 (dashed line) and 1 (solid line); Different
FTN-CPM configurations: (a) Tcpm = Ts, (b) Tcpm = 1.5Ts and (c) Tcpm = 2Ts

where zkk−N is a complex Gaussian random vector that describes
the input of the ADC, with a mean vector defined by µx =

DG
[√

Es
Ts
e
ψkk−N−Lg

]
, and covariance matrixR = σ2

nDGG
HDT ,

with D and G as introduced before with η = N . The integration
interval is expressed in terms of the quantization region Ykk−N that
belongs to the channel output symbol ykk−N . After rewriting (8)
as a real valued multivariate Gaussian integration, how it is done in
equation (21) in [6], the algorithm in [16] can be applied. Finally
the BCJR algorithm provides the probabilities Paux (sk−1, sk|yn)
which are subsequently used for computing the symbol APPs via
Paux (xk|yn) =

∑
∀sk−1,sk⊇xk

Paux (sk−1, sk|yn). The multivari-
ate Gaussian integration (8) becomes computationally expensive
when M , Mcpm and the channel memory are high, as detailed in [7].
Note that for uncorrelated noise samples, subsequent channel out-
puts are independent, such that P (yk|yk−1, xn) = P (yk|xn),
obviating the need for an auxiliary channel law.

4.2. The Proposed Simple Demodulator

In order to relieve the computational load at the receiver, some ver-
sions of the proposed FTN-CPM scheme can be demodulated with
an alternative simple strategy. The receive strategy for the binary
FTN-CPM case with h = 1

4
, and sufficiently small Tcpm, like Tcpm =

2Ts, only involves the evaluation of a change in real or imaginary
part, depending on the previous sample yk−1, which can be cast as

x̂k =

{
1
2
|{Re{yk} − Re{yk−1}|, if yk−1 ∈ {1 + j,−1− j},

1
2
|{Im{yk} − Im{yk−1}|, if yk−1 ∈ {1− j,−1 + j}.

Fig. 6 illustrates the receiver decisions in a noise-free scenario for
Tcpm = Ts in Fig. 6(a), Tcpm = 1.5Ts in Fig. 6(b) and Tcpm = 2Ts in
Fig. 6(c), where the phase distortion brought by the receive filter is
neglected for illustration purpose. Note that for larger values for Tcpm

the noise sensitivity increases. A special case is given by Tcpm = 2Ts

which results in the same number of equidistant constellation points
as the corresponding 8-symbol CPFSK.

5. NUMERICAL RESULTS

In order to preserve the transmit waveform and its zero-crossings, a
suboptimal short bandpass receive filter is considered as follows

g(t) =

√
1

Tg
rect

(
t− Tg/2
Tg

)
· ej2π∆f(t−Tg/2), (9)

which is similar to the integrate and dump receiver considered
in [17]. Note that the common receiver based on a matched filter

bank is hardware demanding and not compatible with the consid-
ered 1-bit approach. Table 1 gathers the simulation parameters for
all considered CPM waveforms. 4-CPFSK [6] serves a standard ref-
erence waveform, which provides reliable communication without
additional coding when considering 1-bit quantization. The same
holds for 8-CPFSK [7] which serves as reference waveform that
does not require additional coding for M = 5 and optimized low-IF
with nIF = 0.25. The proposed FTN-CPM is represented by the
running example from Section 3 and 4 specified by Mcpm = 2,
h = 1

4
and rectangular frequency pulse with different durations

Tcpm. Note that for the considered FTN-CPM schemes the receive
filter is such that noise samples are uncorrelated and an auxiliary
channel law (specified by N ) is not required.

Waveform Simulation Parameters

4-CPFSK [6] Mcpm = 4, Lcpm = 1, Tg = 0.5Ts,
h = 1/4, nIF = 0, φ0 = π/4, N = 0

8-CPFSK [7] Mcpm = 8, Lcpm = 1, M = 5, Tg = 0.5Ts,
h = 1/8, nIF = 0.25, φ0 = π/8, N = 0

Proposed FTN-CPM Mcpm = 2, M = 1, Tg = Ts,
h = 1/4, nIF = 0, φ0 = π/4

Table 1: Considered waveforms

The adjustable power containment bandwidth is considered,
where we refer to 90% power containment (B90%) as default and
use for some cases also 95%. The considered SNR is defined by

SNR =
limT→∞

1
T

∫
T
|x (t)|2 dt

N0 B90%

=
Es

N0
(TsB90%)−1, (10)

where x(t) =
√

Es
Ts
ejψ(t) is the complex low-IF representation of

the signal and the noise power density N0 corresponds to the vari-
ance of the noise samples in (3).

5.1. Spectral Efficiency and Effective Oversampling Ratio

The spectral efficiency w.r.t. B90% reads

spectral eff. =
Ibpcu

B90%Ts
[bit/s/Hz], (11)

where Ibpcu is the achievable rate w.r.t. one symbol duration Ts,
which is computed by applying the methods developed in [6].
The effective oversampling ratio w.r.t. B90% is given by OSR′ =
M (B90%Ts)

−1. Table 2 displays computed values for effective
oversampling factor and maximum spectral efficiency for the wave-
forms considered in Table 1. Moreover, Fig. 7 illustrates the spec-
trum efficiency w.r.t. B90% versus SNR. It is shown that choosing
Tcpm ≥ 1.6Ts yields a higher spectral efficiency as the correspond-
ing CPFSK waveform for medium and high SNR. When referring
to the B95% it is required to choose Tcpm ≥ 2Ts for approaching the
spectral efficiency of the corresponding CPFSK, cf. Table 2.

Waveform Tcpm
Ts

M
log2Mcpm
B90%Ts

log2Mcpm
B95%Ts

OSR′

8-CPFSK [7] 1 5 3.467 2.873 5.778
4-CPFSK [6] 1 4 2.372 1.976 4.744
4-CPFSK [6] 1 2 2.372 1.976 2.372

Proposed FTN-CPM 1 1 2.853 1.983 2.853
Proposed FTN-CPM 1.6 1 3.507 2.544 3.507
Proposed FTN-CPM 2 1 3.891 2.881 3.891

Table 2: Bandwidths and effective oversampling factor
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5.2. Bit Error Rate

The uncoded BER is shown in Fig. 8. The increase of the length
of the frequency pulse Tcpm in the proposed binary CPM reduces
the distance between the constellations points, which results in
increased sensitivity to noise. Different to the 1-bit customized
8-CPFSK [7], the proposed FTN-CPM shows a BER performance
which decreases fast for higher SNR. An additional highlight is
that the proposed simple receiver strategy results in a BER perfor-
mance which is almost identical with the performance of the optimal
BCJR-based CPM demodulator especial at medium and high SNR.

6. CONCLUSIONS

The present study introduces a novel subclass of CPM signals,
namely CPM signals with faster-than-Nyquist signaling. The novel
waveform is especially promising in the context of 1-bit quantization
at the receiver, because it provides a good steering of zero-crossings.
By considering Carson’s bandwidth criterion it is shown that a wave-
form equivalent to common CPFSK in bandwidth and information
bits can be constructed with a higher signaling rate. Numerical re-
sults show superior performance in terms of spectral efficiency and
BER for the channel with 1-bit quantization at the receiver. The il-
lustrated binary FTN-CPM signal can be detected with an extremely
simple detector with a performance close to MAP detection.
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