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Abstract—Systems with 1-bit quantization and oversampling
at the receiver are promising for IoT applications due to low
hardware complexity and low energy consumption. Zero-crossing
precoding implies that the information is conveyed in the time
instance of a zero-crossing within the symbol time interval. In this
context, this study proposes an iterative spatial temporal MMSE
precoding algorithm. In comparison to the joint space time
MMSE precoder, the proposed method shows a significantly lower
computational complexity and a comparable MSE performance.

I. INTRODUCTION

1-bit quantization and oversampling is promising for IoT
applications [1], [2], where the most important requirements
include low energy consumption and low hardware complexity.

In [3] it was shown that the achievable rate for bandlimited
1-bit quantized processes improves considerably with over-
sampling. In this context, a benefit of oversampling in terms
of capacity per unit cost is shown in [4] and more recently,
the achievable rate for the noisy bandlimited channel with
oversampling was considered in [5].

A number of practical concepts for the 1-bit oversampling
channel have been developed for SISO systems [6], [7],
[8], [9], [10] and MIMO systems [11], [12]. A promising
waveform design for MIMO systems is based on the zero-
crossing precoding concept [12]. In this context, the MMSE
criterion is beneficial in the low-SNR regime as shown in
[13]. However, the joint space time precoding method in [13]
involves the inversion of a large matrix. Iterative precoding
methods have been considered in the literature to reduce the
computational complexity of linear filters such as the MMSE
and the zero forcing (ZF) filters. In [14], the inverse Gram
matrix in the spatial MMSE filter is approximated by means
of the diagonal band Newton iteration method. The coordinate
descent method is applied in [15] to avoid the inversion of
a high-dimensional Gram matrix in the design of decentral-
ized massive MIMO precoders. Numerical results confirm
that the mentioned iterative approaches have a comparable
performance to the corresponding closed-form solutions.

Unlike existing iterative methods, the present study proposes
an alternating approach involving two separate precoding ma-
trices for space and time. In this context, a joint optimization
problem is formulated and solved iteratively with a gradient
projection method.

The rest of the paper is organized as follows: The system
model is introduced in Section II. Then, Section III details the
proposed space-time MMSE precoding. The simulation results
and the conclusion are provided in Section IV.

Notation: In the paper all scalar values, vectors and matrices
are represented by: a, x and X, respectively.

II. SYSTEM MODEL

A multiuser MIMO downlink channel as presented in Fig. 1
is considered. It is considered that the base station (BS) is
equipped with N; transmit antennas and that each of the
Ny users is equipped with N, receive antennas. Besides the
signaling rate A’?X and the sampling rate % = % the
system is characterized by transmit filters and receive filters
with impulse responses grx(#) and grx(f), respectively. The
combined waveform, determined by the transmit and receive
filter, is given by the convolution of both filters v(¢) =
g1x (1) * grx (t). Moreover, 1-bit quantization is applied in each
receive chain. A frequency flat fading channel is considered
which is described by a matrix H with dimensions N;Ny X N.

It is considered that each user receives N, independent data
streams and the input associated to the ith antenna of the kth
user is given by xj; with N complex symbols.

Due to the specific sampling and quantization properties
of the receivers, each input sequence xji; is mapped to a
desired binary output pattern, represented as a row vector
Cout.k,i With a length of Nyor = MrxN+1 for further processing.
Each symbol in the vector xj ; is taken from an alphabet of
MRgx + 1 symbols. Depending on the symbol a zero-crossing is
induced in one of the MRy oversampling time intervals or no
zero-crossing is induced and the resulting sequence with all
the desired zero-crossings is termed Cou k ;- Its construction
is illustrated in [12], [13]. Stacking all N;N, desired output
patterns yields the matrix Coy with dimensions NNy X Niot.

It is considered that the matrix Cyy serves as the input
for a linear precoding scheme, where the spatial precoding
is represented by matrix multiplication with Pgpsce from the
left hand side and temporal precoding is represented by matrix
multiplication with Py from the right hand side. Using these
definitions, the unquantized received signals can be expressed
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Fig. 1: Multiuser MIMO system model

with a stacked vector notation in terms of a matrix with
dimensions NyN; X Nio by

Y =HPpceCout PiimeU’ V! + NG}, (1)
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where the temporal waveform is described by
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with dimensions Ny X Nyo. The receive filter with dimensions
Niot X 3Nyot is described by
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with 8RrRx = [ng(_T(N+ MLRX))’ ng(_T(N+ M;RX)"' MLRX PRI
grx (T(N+ MLRX))]T and agx = (T /Mgy)"/?. The matrix U with
dimensions Ny X Ng is an upsampling matrix, which inserts
zeros where Ng = M1xN + 1. It is defined by

Um,n = {

The matrix N, with dimensions N; X 3N, contains i.i.d.
complex Gaussian noise samples with zero mean and variance
o2 = Ny. Finally, the reveived signal is quantized elementwise,
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else.

using 1-bit resolution in the real part as in the imaginary part,
which is expressed as

Z=0(Y).

III. MMSE SPACE-TIME PRECODING

“4)

The aim is to find an optimal Pgp,ce with dimensions N; X
NyN; and an optimal Pme With dimensions Nyt X Ng, that
minimizes the MSE which is denoted as € in the sequel. With
the MMSE criterion and an instantaneous power constraint,
the optimization problem can be cast as

E{||fY - Coull;}
”PspaceCoutPtimeUT GTx”lzzr < Ey,

(&)

mlnf ’Plime’Pspace
subject to:

where Gty represents the pulse shaping filter at the transmitter,
which is constructed analogously to (2). The scalar Ey denotes

the maximum transmit energy for one transmission block and
f is a scaling factor.

A. Iterative Space Time Precoding

The derivative of the objective function in (5) with respect

to (w.rt) Py, is given by
61’6;‘:ace =f2H" HP e C o PisncUT VI VUPE. CH,
- fH CouVUPH CH.. (6)
The derivative w.r.t. Py, is given by
ag—gm =f2CH P H" HP e CouiPrineUT VI VU
- el P H" CouVU. (7)



Taking the derivative of € w.r.t. f and equating it to zero yields

[ =(trace{ HPpace Cout PiimeU” V! C 31 ®)
+trace{Cou VUP{, .CHLPH. H"})/
(2(||HPspaceC0utPtimeUTVT ”12?
+ trace{GRxRNGlgx})).

Based on the instantaneous power constraint in (5), it can
be defined Q@ = CoutPtimeUTGTx, A = PyaceCon, and
B = UT G14. With this, the power constraint can be further
expressed as

”PspaceQ”%«" = ||APtimeB||12: < E. )

Hence, the spatial- and time-domain filters can be normalized
to satisfy the instantaneous power constraint with equality as

pspace = Pspace : VEO”PspaceQ”;?l (10)
Prime = Prime - VEol| APeimeBI7". (11)

Using the introduced gradient expressions and normalizations
from above a projected gradient descent algorithm is proposed
as described in Algorithm 1.

Algorithm 1: Proposed Projected Gradient Descent
I: 10
2: Initialize Pgpace[i] < Spatial ZF
3: Initialize Pyme[i], f [i] « Closed-form MMSE (23), (24)
4: repeat

Update Precoding matrices:

Caclulate Q[i] = Cout Piime [{]JUT Grx
Calculate 9€ /0P, [1] by (6)

Pspace [i+1] « Pspace [i] - s 6E/aP:pace [i]
Normalize Pgpace [i + 1] due to (10)

Calculate A[i] = Pspace [i + 1] Cout
Calculate de /0Py [i] by (7)

Prime [i + 1] < Prime [i] — p1c - 65/6P;me[i]
Normalize Pgme [i + 1] due to (11)

Update f
Calculate f [i + 1] by (8)
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i—i+1
21: until convergence criterion triggers

B. Initialization with Spatial Zero-Forcing Precoding

For the initialization, we use a spatial zero-forcing pre-
coder [16] with the precoding matrix given by Pgpce =
czeHY (HH™)™', where czrp represents the prefactor. By
considering a long block length, the matrix CoyPiimeU” Gy x
G%UP{?’meC(’){Jt can be well approximated by a scaled identity
matrix al. Imposing that the spatial precoding does not change

the transmit power can be implicitly expressed as

a trace{PspacePS}gace} = trace{a In,n,} = aN:Ny, (12)
which implies that the prefactor reads as
CzF = \/NrNu/trace{(HHH )13, (13)

With this scaling, the maximum transmit power can be ex-
pressed without the spatial precoding as

Eo = trace{CouPimeU” G1xGL UPH CH

time ~outJS*

(14)

Based on the ZF-precoding matrix the unquantized received
signal is described by

Y = czpCoutPiimeU" V! + NG (15)
With this, the temporal MMSE problem can be cast as
ming p,,,.  E{IfY = Coull7} (16)
subject to:  ||CouPimeU” GTx||12: < E,

which is a similar problem as solved in [17]. By denoting the
new MSE expression by er, the Lagrangian function reads as
L(Ppes Piime, f) = A7)
er + A(trace{C L Cou PimeU" G1xGLUPH } — Ey).
The derivative w.r.t. Py,
L
OP;;

time

yields

:f2 C%F C(I;{JtcoutptimeUT VT VU (18)

—f ezp CH CouVU
+ AC(I;{llCOutPtimeUT GTXG%U.
Equating it to zero implies

CZF C H

7 A CouVU =c2:CH Coui PimUT VI VU

out

(19)
A H - .
+ fzcoutcoutptimeU GTXGTXU’
and
CZF

P!
- VU = c2ePinUT VI VU + FPﬁmeUT G1GLU.

The latter can be rearranged such that the structure of the
optimal precoding matrix can be determined as

pl
Piime = C% VU( ZUTVIVU + FUT G1GLU)™.

The derivative w.r.t. f yields

g—; =2fclVUPE CH |2 (20)
— czr 2Re{trace{CH Co, VUPE }}
+2f trace{GRxRNGlgx}.
Equation it to zero yields
C% trace{CH Cou VUPH } = 1)

2 T /T 12 T
CZFllcoutPtimeU Vv ”F +trace{GRxRNGRx},

where the real part operator has been skipped due to the
structure of the optimal Pyne. After multiplication from the
right with Py and applying the trace operator, (19) is equal
to (21). Putting together the right hand sides yields

A trace{GRxRNng}

A _ i (22)
2 trace{CH CouPiimeU” G1,GL UPH

time




where it is considered that the power constraint holds with
equality such that trace{C%,CouPimeU’ G1xGLUPH
Ey . With this, the temporal precoding matrix reads as

Pime = ' czr VUT!, (23)

T
with T = G U7 VI VU + Ol T 6, G U Tnsert-
ing (23) into the power constraint (14) yields

_1
[ =czpEy? ||Cou VUT U Gry]|r. (24)

IV. NUMERICAL RESULTS AND CONCLUSION

For the numerical evaluation, a system with Ny = 2 users
with N, = 2 antennas and N; = 5 base station antennas is
considered. Each transmit block consists of N = 50 symbols.
The signaling and sampling rate are chosen as Mrx = Mty = 2.
As suggested in [11], the pulse shaping filter is a raised-cosine
(RC) with roll-off factor erx = 0.22 and the receive filter is
a root raised cosine (RRC) with roll-off factor egx = 0.22.
The signal bandwidth is given by Wy = (1 + ex) /T. Uncor-
related random channel coefficients are considered according
to hi k1 ~ CN(0,1). The SNR is defined as

EO/(NqT) _ EO
N0(1+€TX)% NqNO(l"'ETx).

The step size for the proposed projected gradient descent
algorithm equals g, = 1077 and u, = 1073, In Fig. 2 the
proposed iterative spatial temporal MMSE precoding algo-
rithm is compared with the joint space time MMSE precoder
[13] in terms of the MSE, which confirms that the MSE
decreases with the iterations. The computational complexity
of the precoder in [13] is on the order of O((Nth)3).
With O((N;:Nw)® + NG + imax (2NiotNuN:Ng) + Niot(NulNe)?) +
NigtNeN:Ny + NE NNy + (NeNy)* Ne+ NigtNeNe Ny + NigtNeNg +
NZN:Ny + NigNiN:Ny + NNNy + NiotNgN;Ny), which is
approximately O(Ng) for small ij,x, the proposed method has
a significantly lower computational complexity, in comparison
to the method in [13]. Fig. 3 illustrates the uncoded bit
error rate. The different precoding methods are compared in
combination with the zero-crossing approach and the forward
mapping approach presented in [11]. The results show a
significant benefit for the zero-crossing approach. Finally, it is
shown that the proposed iterative approach has a comparable
bit error rate as compared to the closed form approach in [13]
while having a significantly lower computational complexity.

SNR =

(25)
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