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ABSTRACT

This work describes a generalization of our previous max-
imum likelihood (ML) detector to a maximum a posteriori
(MAP) detector in distributed networks using the diffusion
LMS algorithm. Nodes in the network must decide between
two concurrent hypotheses concerning their environment, us-
ing local measurements and shared estimates from neighbors.
The generalization is provided by a new approximation con-
cerning the network connectivity, whose accuracy is shown
by simulations. The new MAP detector inherits from our ML
formulation an exponential decay rate in probability of error
independent of the LMS step size, if it is sufficiently small.

Index Terms— adaptive networks, distributed detection,
maximum a posteriori, network connectivity.

1. INTRODUCTION

Detection in distributed sensor network has been studied in
many different contexts, such as event and security detec-
tion in IoT environments [1–3] and in one-bit messaging sys-
tems [4, 5]. Some works adopt data diffusion schemes [5–10]
or consensus schemes [2,3,11–14], and concerning detection
itself, a common approach is the classical Neyman-Pearson
(NP) detector [4, 6, 7], which is historically used, for exam-
ple, to detect the presence of a target in a radar. Another
common approach is the Bayesian formulation [15,16], when
prior probabilities are set for the possible outcomes.

In our previous work [17], we developed a distributed
maximum likelihood (ML) detector (i.e., when the prior prob-
abilities are equal) which attains an exponential decay in the
probability of error during the transient, due to a specific ini-
tialization of the diffusion LMS estimator. Furthermore, the
transient performance of that detector is almost indifferent
to the value of the LMS step size, if it is sufficiently small.
This work proposes the more general Maximum a Posteriori
(MAP) detector for when the prior probabilities are not equal,
keeping the performance of the ML detector. For that we in-
troduce new approximations assuming, only for derivations,
that every node in the network is connected to every other
node; this is reasonable due to the diffusion LMS equalization

This work has been supported in part by the ELIOT, grant ANR-
18-CE40-0030, by São Paulo Research Foundation (FAPESP), grants
2018/12579-7 and 2018/26040-2, and by CNPq, grant 304714/2018-6.

effect on connected networks [18]. We also assume, for an ap-
propriate development, deterministic regressors with known
covariance matrices, a sufficiently small LMS step size, and
that we can determine the noise existent in measurements.

2. DETECTION OVER DISTRIBUTED NETWORKS

In a distributed network with K nodes, each node k at every
time i has access to a scalar observation dk(i) of its environ-
ment and to a deterministic regressor vector uk(i) ∈ RM, i.e.,
we assume the uk(j), 0 ≤ j ≤ i, to be known at time i. Each
node receives additional information only from its neighbors
(without a fusion center), which can improve the quality of
the decision process [6, 7, 17, 19]. The following data model:

dk(i) = uTk (i)ws + vk(i), k = 1, . . . ,K , (1)

relates the observable variables dk(i) and uk(i) to an un-
known parameter vectorws ∈ RM, where vk(i)∼N (0, σ2

v,k)
is random noise. Nodes must decide between two hypotheses
about the unknown parameter: ws = w1 if H1 is true, or
ws = w2 if H2 is true. Let p(H1) and p(H2) be the respec-
tive prior probabilities. We assume that the two possibilities
are known a priori, although it is not known which of the two
is in place. As in [17], we wish to minimize the maximum
probability of error of the distributed detector, using the fol-
lowing test structure, for each node k, as in [6, 7, 17, 19]:

tk
(
wk(i)

) H2

≷
H1

γ , (2)

where tk is a local function dependent on a local estimate
wk(i) of ws, and γ is an appropriate threshold. This struc-
ture exploits the connection between detection and estima-
tion [20], which can be verified, for instance, when wk(i) is
the Minimum Variance Unbiased Estimate for linear models.

In order to describe a fully distributed MAP detector, we
start by collecting all data of all nodes up to time i as follows:

d0:i = col{d1(i), . . . , dK(i), . . . , d1(0), . . . , dK(0)},
U0:i = col{uT1 (i), . . . ,uTK(i), . . .uT1 (0), . . . ,uTK(0)},
v0:i = col{v1(i), . . . , vK(i), . . . v1(0), . . . , vK(0)},

where the col operator stacks its arguments column-wise.
Therefore, equation (1) can be rewritten as

d0:i = U0:iws + v0:i , (3)



which describes a global linear model for the network data un-
der a global Gaussian perturbation vector v0:i ∼ N (0,Σ0:i),
where 0 denotes the zero vector and

Σ0:i = E{v0:ivT0:i} = Ii+1⊗Σ , Σ = diag(σ2
v,1, . . . , σ

2
v,K),

where Ii+1 is the identity matrix of dimension i+ 1 and the
operator ⊗ denotes the Kronecker product of matrices.

In order to obtain the local estimate wk in (2) in a dis-
tributed and cooperatively way, we use the diffusion LMS al-
gorithm, an estimation technique given by the equations

ψk(i) = wk(i−1) + µkuk(i)[dk(i)− uTk (i)wk(i−1)] , (4)

wk(i) =

K∑
l=1

ak,lψl(i) ,

K∑
l=1

ak,l = 1, ak,l ≥ 0, ∀k, l , (5)

where ψk(i) are intermediate estimates, µk is a positive step
size and the scalar ak,l represents the weighted contribution
of ψl(i) in (4) from node l to estimate wk(i) of node k. Fur-
thermore, consider that the estimateswk(i) in (5) are linearly
related to d0:i (assuming wk(−1) = 0); that is,

wk(i) = Lk(i)d0:i , (6)

where Lk(i) ∈ RM×(i+1)K defines the local linear estimation
procedure; thus, it is related to the diffusion LMS in our case.

Define Pk(i) = Lk(i)U0:i ∈ RM×M ; we have then from
(3) and (6) that

wk(i) = Pk(i)ws + Lk(i)v0:i , (7)

which is also a linear model of the data under the Gaussian
perturbation Lk(i)v0:i ∼ N (0, Sk(i)), where we defined
Sk(i) = Lk(i)Σ0:iL

T
k(i) ∈ RM×M, which is the covariance

matrix of wk(i). Considering the data model in (7) and
wk(−1) = 0, an exact local test for the distributed MAP
detector using diffusion LMS is given as [20, p. 115]1

tk,ex(i) = wT
k (i)Qk(i)(w2−w1)−1

2
(Ek,2−Ek,1)

H2

≷
H1

γ, (8)

in which we defined Qk(i) = S−1k (i)Pk(i) ∈ RM×M, Ek,s =
wT
s P

T
k (i)Qk(i)ws, s ∈ {1, 2}, and γ = ln(p(H1)/p(H2)).

The computation of quantities Qk(i) and Pk(i) is quite
demanding, since it would require their exchanging in the
diffusion LMS update. In order to simplify the computations
and make them amenable for distributed implementations, [6]
proves, for diffusion LMS, that Qk(i) in (8) can be approxi-
mated by the identity matrix multiplied by a constant βk, sup-
posing that: 1) no diffusion update is used to compute Qk(i),
that is, ak,l = 1 for l = k and ak,l = 0 for k 6= l in (5); and
2) the step sizes µk are sufficiently small.

1When wk(−1) 6=0, tk,ex(i) is slightly different; we must subtract from
wk(i) in (8) a term that accounts for the LMS adaptation of wk(−1), which
cancels the effect of initializing wk(−1) 6= 0. As a result, the performance
of the exact distributed MAP detector does not depend on the initial estimate.

In [17], we followed these assumptions to propose our dis-
tributed ML detector, and since the performance of a detector
is not affected when the test in (8) is multiplied by a con-
stant when the threshold γ is set to zero (which is the case
for the ML detector), we can simply approximate Qk(i) by
the identity matrix. Nevertheless, in the more general case
where γ 6= 0, the constants βk cannot be ignored and must be
estimated for each node k.

In light of the above, we take a different approach in this
work; instead of supposing no diffusion when computing
Qk(i), we suppose the complete opposite, that is, a totally
connected network where each node communicates directly
with every other node. This is reasonable, since the diffusion
LMS nearly equalizes the overall estimation performance of
nodes in a network, as long the network is connected [18];
thus, we expect the matrices Qk(i) to be equalized as well.
In this sense, we exploit this equalization property to deduce
a single approximation Qk(i) for every node.

3. DEVELOPING THE MAP DETECTOR

We show in this section how the new hypothesis concerning
the diffusion learning process produces an implementable de-
tector. We start developing an expression for Pk(i), which
was not present in our previous work. We first deduce an ex-
pression forLk(i) in (6) for diffusion LMS; Equations (4) and
(5) can be rewritten in a single expression as follows:

wk(i) =

K∑
l=1

ak,lµlWl(i)d(i) +

K∑
l=1

ak,lYl(i)wl(i−1) , (9)

where we defined

Wk(i) = [0 0 . . .uk(i) . . .0], (M ×K)

d(i) = col{d1(i), . . . , dK(i)}, (K × 1)

Yk(i) = IM − µkuk(i)uTk(i), (M ×M)

and IM ∈ RM×M is the identity matrix. Using (6) to substitute
wl(i−1) by Ll(i−1)d0:i−1 in (9), we can rewrite it as

wk(i) =

[
K∑
l=1

ak,lµlWl(i)

K∑
l=1

ak,lYl(i)Ll(i−1)

][
d(i)
d0:i−1

]
;

thus, by the definition in (6), we have

Lk(i) =

[
K∑
l=1

ak,lµlWl(i)

K∑
l=1

ak,lYl(i)Ll(i−1)

]
. (10)

Let us find a global description for Pk(i). Define

P(i) = col{P1(i), . . . , PK(i)}, (KM ×M)

L(i) = col{L1(i), . . . , LK(i)}, (KM × (i+ 1)K)

and, by the definition of Pk(i) right before (7), it holds that

P(i) = L(i)U0:i . (11)



Also defineA = (ak,l) ∈ RK×K, such thatA1K = 1K , with 1K
being a vector with entries equal to one in RK. We also need
the following expressions to complete the P(i) description:

H(i) = col{u1(i)u
T
1 (i), . . . ,uK(i)uTK(i)}, (KM ×M)

A = A⊗ IM ∈ RKM×KM , (KM ×KM)

M = diag{µ1IM , . . . , µKIM}, (KM ×KM)

Y(i) = diag{Y1(i), . . . , YK(i)}. (KM ×KM)

It is then straightforward to establish from (10) and (11) that
the following recursion holds:

P(i) = A
(
MH(i) + Y(i)P(i− 1)

)
. (12)

Setting P(−1) = 0, and also µk = µ for every node for
simplicity, a nonrecursive expression for (12) is given by

P(i) = µ

i∑
j=0

F(i, j + 1)AH(j) , (13)

in which we defined the following matrix:

F(i, j) =

{∏i
n=j AY(i+ j − n) if i ≥ j ,

IKM if i < j .
(14)

We showed in [17] that (14) can be expanded as a polynomial
on µ, and that the zero-order coefficient is given by C0(i, j) =
Ai−j+1. Substituting F(i, j) by C0(i, j) in (13) results in a
first-order polynomial approximation for P(i), given as

P1st(i) = µ

i∑
j=0

Ai−j+1H(j) , (15)

which is adequate for sufficient small step size µ.
Our next step is finding an approximation for Sk(i).

Defining w(i) = col{w1(i), . . . ,wK(i)}, a nonrecursive
expression for the covariance matrix S(i) of w(i) was devel-
oped in [17] and is given as

S(i) = µ2
i∑

j=0

F(i, j+1)ADv(j)ATFT(i, j+1), (16)

whereDv(i) = diag{σ2
v,1u1(i)u

T
1 (i), . . . , σ2

v,KuK(i)uTK(i)}
(recall that uk(i) is deterministic). Also note that Sk(i) is
the kth M ×M diagonal block of S(i). Likewise, substi-
tuting F(i, j) by C0(i, j) in (16) results in a second-order
polynomial approximation for S(i), given as

S2nd(i) = µ2
i∑

j=0

Ai−j+1Dv(j)
(
AT
)i−j+1

. (17)

We now apply the totally connected network hypothesis in
order to complete our formulation. As a result of doing this,
the matrix A reduces to (1/K)1K1

T
K and, by consequence,

A = AT = (1/K)I IT, where I = col{IM , . . . , IM} ∈
RMK×M. Under this condition, it is straightforward to note
that An = A, ∀n ∈ N∗. Therefore, substituting the resultant
A in (15) and (17), we have the following approximations:

Pk(i) ≈ µ

K

K∑
l=1

 i∑
j=0

ul(j)u
T
l (j)

 ,

Sk(i) ≈ µ2

K2

K∑
l=1

σ2
v,l

 i∑
j=0

ul(j)u
T
l (j)

 , (18)

valid for a sufficient small step size µ and ∀k. In order to
derive a simple expression for the innermost sums in (18),
we assume that the deterministic regressors uk(i) are a sta-
tionary process with covariance matrix Ru,k to approximate∑i
j=0 ul(j)u

T
l (j) ≈ (i+ 1)Ru,l; then we can rewrite (18) as

Pk(i) ≈ µ

K
(i+ 1)

K∑
l=1

Ru,l,

Sk(i) ≈ µ2

K2
(i+ 1)

K∑
l=1

σ2
v,lRu,l. (19)

Let us make the approximation Ru,k ≈ σ2
u,kIM in (19),

which is reasonable, provided the correlations between dif-
ferent entries in uk(i) are small. Then, we can approximate
Qk(i) = S−1k (i)Pk(i) as

Qk(i) ≈ K

µ

∑K
l=1 σ

2
u,l∑K

l=1 σ
2
v,lσ

2
u,l

IM = βIM , (20)

provided the σ2
v,l are possible to be determined.2

Therefore, under all the assumptions above, we approxi-
mate Qk(i) in (8) by (20) at every node. As in [17], we also
approximate Pk(i) by IM in Ek,s of (8), since Pk(i) ≈ I after
convergence of diffusion LMS. Thereby, we propose the fol-
lowing local approximate and low-complexity MAP detector:

tk(i) = wT
k(i)(w2 −w1)− 1

2

(
||w2||22 − ||w1||22

) H2

≷
H1

γ′,

(21)
where γ′ = γ/β and γ = ln(p(H1)/p(H2)). Since tk(i) in
(21) is the same as our ML detector, it has the same perfor-
mance features, namely an exponential decay in the probabil-
ity of error during the transient, which is almost indifferent to
the value of the step size µ, if it is sufficiently small. These
features are obtained when our algorithm is initialized at

wk(−1) =
w1 +w2

2
= w̄ , (22)

which also avoids the initial time in which the probability of
error does not decrease, as showed in [17, Fig. 1]. As a matter

2For instance, in some applications, σ2
v,l can be estimated shutting down

the filters running in the nodes, i.e., uk(i) = 0 in (1), so that dk(i) = vk(i).



Table 1. Network Statistics
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

αk × 10 7.7 2.8 7.6 4.9 4.2 6.1 4.2 8.9 6.2 8.5 0.1 6.7 2.3 0.5 6.2 7.7 3.9 4.8 7.9 8.5
σ2
u,k × 10 5.3 1.8 6.5 6.0 2.0 2.4 8.1 1.1 5.3 4.7 10 6.5 5.4 0.9 4.7 5.5 1.8 9.3 9.0 2.3

σ2
v,k × 100 1.5 6.7 1.1 2.2 1.0 3.6 1.1 4.0 2.6 4.8 1.7 8.9 2.6 0.1 5.4 8.1 8.4 1.5 7.9 9.5

of fact, the same applies to our MAP detector, even though
γ′ is different from zero. To see that, let us investigate the
probability of error of the MAP detector, which is given as

pe,k(i) = p(H1)Q
(
γ′ − E{tk(i)|H1}

σk(i)

)
+ p(H2)Q

(
E{tk(i)|H2} − γ′

σk(i)

)
, (23)

where σk(i) is the standard deviation of tk(i) and Q(z) =
Prob(Z >z) for a standard Gaussian variable Z. We showed
in [17] that when wk(−1) is as (22), the ratio between
E{tk(i)|Hs} and σk(i) does not depend on µ, if µ is suf-
ficient small and during the transient. We also showed that
σk(i) can be approximated by a linear function of µ [17, Eq.
28]; therefore, the ratio between the threshold γ′ and σk(i)
also does not depend on µ, since 1/β is a linear function of
µ as well (20). Consequently, under our assumptions, the
probability of error is approximately independent of µ during
the transient of the filters.

4. SIMULATIONS

We consider two network topologies, A and B, with K = 20
nodes in Fig. 1. Topology A is the same used in [6], and
B tests the simplest topology in which the network is still
connected. The prior probabilities are p(H1) = 1/3 and
p(H2) = 2/3. In order to obtain regressors uk(i) with full
covariance matrices, we generate 20 signals using first order
Markov processes (which are used, among other applications,
to model certain communication channels), with power σ2

u,k

and correlation αk. Recall that at time instant i the regressors
uk(i), 0 ≤ j ≤ i are known, and our detector approximates
the optimal detector given uk(j), 0 ≤ j ≤ i. The noise in
the measurements has power σ2

v,k. The values of σ2
u,k, αk

and σ2
v,k were obtained randomly and can be seen in Table

1. The weights ak,l in (5) are obtained using the Metropolis
rule [21], resulting A = AT . We choose w1 = [1, 1, . . . , 1]T

and w2 = [0.97, 1, . . . , 1]T very close to each other in order
to test an unfavorable detection situation.

The plots in Fig. 2 show maximum probability of error
pe,max(i) = maxk pe,k(i) of our simulated MAP detector
from (21) in transient, for topologies A and B and using 105

realizations for estimating the probabilities. We compare the
results with the theoretical MAP detector computing the exact
values of Qk(i) and Pk(i) [see (8)] and considering the same
topologies. Our detector is initialized as (22), whereas the
exact one is accordingly initialized asw(−1) = 0. The LMS

(a) Topology A (b) Topology B

Fig. 1. Topologies used for simulations.
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Fig. 2. Logarithm of the maximum probability of error in the
network, for topologies A and B.

step size is µ = 1.10−6, which is sufficiently small for our
purposes; as we showed in [17, Fig. 2], choosing smaller step
sizes maintains the same decay rate while lowering the steady
state probability of error (not shown in Fig. 2). As we can see,
our detector approximates very closely the exact one for the
two topologies, confirming that the totally connected network
hypothesis works very well, even for topology B, and the
cost of using this approximation is just the small difference
between our detector from (21) and the exact in both cases.

5. CONCLUSION

We developed a low-complexity distributed MAP detector
that is a generalization of our previous ML detector, retaining
the exponential convergence of the probability of error in sta-
tionary environments and the insensibility to the step size. We
assumed a totally connected network hypothesis to approx-
imate the local tests, and the simulated results showed that
even when the network connectivity is very low our method
presents very good performance.
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