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ABSTRACT
We propose an optimal MMSE precoding technique using quantized
signals with constant envelope and PSK modulation. Unlike the existing
MMSE design for 1-bit resolution, the proposed method employs
uniform phase quantization and the bounding step in the branch-and-
bound method is different in terms of considering the most restrictive
relaxation of the nonconvex problem, which is then utilized for a
suboptimal design also. Numerical simulations show that using the
MMSE criterion instead of the established maximum distance to
decision threshold yields a lower BER in many scenarios and a smaller
average number of bound evaluations for low and medium SNR.

Index Terms— Precoding, low-resolution quantization, MIMO sys-
tems, branch-and-bound methods, MMSE, constant envelope.

I. INTRODUCTION

Multiuser MIMO systems with large scale antenna arrays are ex-
pected to play an important role on the future generations of wireless
communication systems [1]. However, a challenge for this technology
to overcome is the energy consumption and costs related to the large
number of radio front ends. One approach to tackle these issues is the
utilization of cheap data converters with low-resolution. Depending on
the pathloss, the converters can be one of the most energy consuming
elements of a radio front end and since their energy consumption
scales exponentially with its resolution in amplitude [2], using a low-
resolution in amplitude might be favorable.

Several strategies for precoding with low-resolution data converters
exist. Linear precoders such as Phase Zero-forcing (ZF-P) [3] suffer
from error floor for medium and high signal-to-noise ratio (SNR).
More sophisticated approaches have been presented recently in [4],
[5] and [6]. However, [4] and [5] imply rounding and [6] implies the
convergence to a local minimum.

Moreover, some optimal precoders exist in literature. In [7] a branch-
and-bound algorithm was developed for maximizing the minimum
distance to the decision threshold (Max-Min DDT) for the 1-bit case. In
addition, in [8] a branch-and-bound algorithm, is presented for finding
the transmit vector that minimizes the mean square error (MMSE), also
for the 1-bit case. More recently, the study presented in [9] also uses the
Max-Min DDT criterion but in contrast to [7] it allows the utilization
of PSK modulation and arbitrary phase quantization at the transmitter.

In this study, we propose a novel branch-and-bound algorithm
for finding the vector that yields the minimum MSE for uniform
phase quantization with arbitrary number of quantization regions in
combination with PSK modulation.

In contrast to the Max-Min DDT criterion considered in [5], [7], [9],
which is promising in the context of hard decision receivers and the
high SNR regime, the used MSE criterion is more general.

Besides the consideration of phase quantization and PSK modula-
tion, the proposed approach uses a different bounding method as the
approach presented in [8]. Whereas the approach in [8] employs for
relaxation the constant envelope constraint, the presented study relies
on the convex hull of the discrete non-convex feasible set, which is
by definition the most restrictive relaxation for establishing convexity.
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Fig. 1: Multiuser MIMO downlink with phase quantization at the transmitter

Consequently, the lower bounds computed in the present study are
greater or equal to the ones computed in [8]. In addition, we propose
a suboptimal precoding approach based on the relaxed problem, which
we formulate as a convex quadratic program.

The numerical results show that the proposed branch-and-bound
method corresponds to a lower uncoded BER in comparison to the
state-of-the-art algorithms for the low and intermediate SNR regime.

Moreover, the numerical results confirm that when operating in low
SNR, only a small number of bounds needs to be evaluated to determine
the optimal solution.

The paper is organized as follows: Section II describes the system
model, whereas Section III describes a suboptimal algorithm and an
optimal branch-and-bound strategy for the MMSE criterion. Section IV
presents and discusses numerical results, while Section V gives the
conclusions. A convexity analysis is presented in the appendix.

Regarding the notation, note that real and imaginary part op-
erator are also applied to vectors and matrices, e.g., Re {x } =
[Re {[x]1 } , . . . , Re {[x]M }]T .

II. SYSTEM MODEL

This study considers a single cell MU-MIMO downlink, where the
base station (BS) has full knowledge of the channel state, as shown in
Fig. 1. The BS is equipped with M transmitting antennas which serves
K single antenna users.

The symbols to be precoded are represented by the data vector s
where the i-th entry denotes the data for the i-th user. Every entry of
the vector belongs to the set S which represents all possible symbols
of a αs -PSK modulation and is described by

S =
{
s : s = e

jπ(2i+1)
αs , for i = 1, . . . , αs

}
. (1)

The data vector s reads as s = [s1, . . . , sK ]
T , where s ∈ SK .



The vector s is then given to the precoder, which computes the
transmit vector x = [x1, . . . , xM ]

T based on the channel and the noise
statistics at the receiver.

The entries of the transmit vector are constrained to the set X, which
describes an αx -PSK alphabet, which is denoted as

X =
{
x : x = e

jπ(2i+1)
αx , for i = 1, . . . , αx

}
. (2)

The transmit vector x reads x = [x1, . . . , xK ]
T , where x ∈ XM .

Implicitly analog pulse shaping filters are considered at the BS and
matched filters are considered at the receivers.

A flat fading channel described by the matrix H with coefficients
hk ,m is considered, where k and m denote the index of the user and
the transmit antenna, respectively.

With this, the noiseless received signals are denoted by

rk =

M∑
m=1

hk ,m xm . (3)

In the sequel the symbols are organized using a stacked vector notation
in which r = [r1, . . . , rK ]

T represents the noiseless received vector.
At the user terminals the received signals are distorted by addi-

tive Gaussian noise denoted by the complex random vector w ∼

CN(0,Cw ). Using stacked vector notation the received signals at the
detectors are denoted by y = Hx + w.

III. MMSE PRECODER DESIGN

In this section we expose the objective of the precoding algorithm,
discuss the chosen criterion and propose two new algorithms for low
resolution precoding with phase quantization.

The objective of MIMO precoding algorithms is to mitigate the
multi-user interference (MUI) and to simultaneously reduce distortions
brought by additive noise which can be realized by minimization of
the MSE at the receivers. In the case of precoding with low-resolution
the problem is more difficult than with full resolution because the
transmitting vector is in this case constrained to a discrete set.

Unlike the state-of-the-art discrete precoding algorithm for the
MMSE criterion [8], which is devised with 1-bit resolution and uses a
constant envelope restriction for the bounding steps, the present study
implies arbitrary uniform phase quantization and the consideration of
polyhedral constraints like in [9] and similar to [5]. The bounding
method based on polyhedra is more promising than the constant
envelope formulation, because the corresponding set corresponds to
the convex hull and is per definition the smallest convex set that
includes all the discrete solutions. Consequently, the corresponding
lower bounds are more restricted, such that the bounds can only be
larger or equal to the strategy proposed in [8], which is beneficial for
reducing candidates when applying a branch-and-bound method and
also for finding suboptimal solutions.

A. The Continuous Problem

With a total transmit energy constraint the MMSE problem can be
cast as

min
x , f

E{ ‖ f y − s ‖22 } (4)

subject to: xH x ≤ ETx, f > 0.

One approach to solve (4) in closed form is based on KKT conditions
and the inside that for the optimal precoding vector the transmit energy
constraint must hold with equality as described in [10]. Then the
optimal precoding vector reads as

x = f −1(HHH + E{wHw }/ETxI )
−1HH s, (5)

where the optimal scaling factor is given by

f =

√
(sHH(HHH + E{wHw }/ETxI )−2HH s)/ETx. (6)

B. Problem for Constant Envelope Signals With Phase Quantization at
the Transmitter and PSK Modulation

The problem desribed in (4) considers infinite resolution for the
entries in x. Considering quantization of the transmit signal yields
the restriction to a discrete input alphabet such that the corresponding
problem can be cast as

min
x , f

E{ ‖ f y − s ‖22 } (7)

subject to: x ∈ XM , f > 0.

Note that the feasible set is discrete and therefore not convex. In
addition, it can be shown that the MMSE objective function in (7) is
not jointly convex in x and f as described in the appendix. Accordingly
the optimization problem is not convex.

In the sequel, we devise a suboptimal algorithm based on the
relaxation of the feasible set and the formulation of an equivalent
convex problem. Subsequently, we devise a branch-and-bound strategy
for computing the optimal precoding vector.

1) Proposed Mapped Precoder

In this section we propose a suboptimal approach for (7). Since the
feasible set of the optimization problem presented by (7) is non convex
we replace XM by its convex hull D, which is a polyhedron. With
this, the problem reads as

min
x , f

E{ ‖ f (Hx + w ) − s ‖22 } (8)

subject to: x ∈ D, f > 0.

Rewriting the problem in a real valued notation yields

min
x r , f

E{ ‖ f (H rxr + wr) − sr ‖
2
2 } (9)

subject to: Axr ≤ b, f > 0,

with

xr =
[
Re {x1 } Im {x1 } · · · Re {xM } Im {xM }

]T
and

H r =


Re {h11 } −Im {h11 } · · · Re {h1M } −Im {h1M }
Im {h11 } Re {h11 } · · · Im {h1M } Re {h1M }

...
. . .

...
Re {hK1 } −Im {hK1 } · · · Re {hKM } −Im {hKM }

Im {hK1 } Re {hK1 } · · · Im {hKM } Re {hKM }


.

The inequality Axr ≤ b restricts the elements of the precoding vector
to be inside or on the boarder of the polyhedron whose construction
will be detailed in the sequel. An equivalent problem to (8) can be cast
as

min
x r , f

f 2xTr HT
r H rxr − 2 f xTr HT

r sr + f 2E{wT
r wr } (10)

subject to: Axr ≤ b, f > 0.

If f ≥ 0 would be constant, the problem would be a convex quadratic
program, since HT

r H r ∈ S
n
+ (cf. Section 4.4 in [11]). Nevertheless, as

mentioned before, the problem is in general not jointly convex in f
and xr, as can be seen in the appendix.

Nevertheless, the problem can be transferred into an equivalent
convex problem by shifting the scaling factor f to the constraints
and a substitution of the optimization variable. In this context, we
substitute by introducing a new optimization variable with xr,f = f xr.
Accordingly, the resulting problem reads as

min
x r,f , f

xTr,fH
T
r H rxr,f − 2xTr,fH

T
r sr + f 2E{wT

r wr } (11)

subject to: Axr,f ≤ f b, f > 0.



The constraint can be rewritten as a linear constraint, such that the
problem is denoted by

min
x r,f , f

xTr,fH
T
r H rxr,f − 2xTr,fH

T
r sr + f 2E{wT

r wr } (12)

subject to: [A − b]
[
xr, f
f

]
≤ 0, f > 0,

which is a convex quadratic problem (cf. Section 4.4 in [11]). Finally
the optimization problem is expressed as

min
x r,f , f

xTr,fH
T
r H rxr,f − 2xTr,fH

T
r sr + f 2E{wT

r wr } (13)

subject to: R
[
xr, f
f

]
≤ 0, f > 0.

The polyhedron associated to uniformly phase quantized transmit
symbols with αx different phases can be expressed as proposed before
in [9], which is similar to the description in [5]. The corresponding
matrix notation reads as

R =
[
A − b

]
=

[
R̃, −

cos( παx )√
M

1Mαx

]
, (14)

with

R̃ =
[
(IM ⊗ β1)

T , (IM ⊗ β2)
T , . . . , (IM ⊗ βαx

)T
]T ,

and

βi =
[
cosφi , − sinφi

]
φi =

2πi
αx

, for i = 1, . . . , αx .

Note that the solution of (13) yields a lower bound on the optimal
value of the original problem, meaning that the corresponding MSE is
smaller or equal to the corresponding MSE of the original problem in
(7). Yet, the optimal solution of the relaxed problem is not necessarily
in the feasible set of the original problem XM .

Therefore, in order to find a feasible solution, mapping to the closest
Euclidean distance point in XM is considered. The solution after
mapping, then, yields a MSE which is always greater or equal to the
optimal of (7), meaning that after the mapping process an upper bound
on the optimal value of the original problem is found.

2) Proposed Optimal Approach via Branch-and-Bound
As stated before, the continuous solution of (13) is in general not

in XM and then it only provides an unfeasible lower bound, or, after
mapping, a feasible upper bound solution for the original problem. In
this sense, the method in (13) does not provide a reliable way for
solving (7).

Therefore, we propose a branch-and-bound strategy that always
provides the optimal solution for (7) with significantly reduced com-
putational complexity as compared to exhaustive search.

In the following we provide explanations of the branch-and-bound
concept and then the algorithm is applied to the present precoding
problem. The section is divided into four parts, namely Introduction
of the Branch-and-Bound Method, Branch-and-Bound Initialization,
Subproblems and MMSE Branch-and-Bound Precoding Algorithm.

a) Introduction of the Branch-and-Bound Method
A branch-and-bound algorithm is a tree search based method. The

tree represents the set of all possible solutions for the vector x, i.e., it
is a representation of the set XM . For the construction of the tree M
levels are considered and each node has one ingoing branch and αx

outgoing branches.
For constructing the precoding vector we consider the minimization

of an objective function g(x, s), which could be the MSE, subject to
the feasible discrete set, described by

xopt = arg min
x

g(x, s) s.t. x ∈ XM . (15)

A lower bound on g(xopt, s) can be obtained by relaxing XM to its
convex hull. The relaxed problem is expressed as

xlb = arg min
x

g(x, s) s.t. x ∈ D. (16)

An associated upper bound on g(xopt, s) can be obtained by mapping
the solution of (16) and evaluating g(·), as discussed previously on
subsection III-B1. The upper bound value of (15) is termed ǧ.

Having an upper bound solution implies that ǧ ≥ g(xopt) ≥ g(xlb),
which means that the mapped solution is always greater or equal to the
relaxed one from (16).

By fixing d entries of x, the vector can be rewritten as x =
[xT1 , x

T
2 ]

T , with x1 ∈ X
d . With this, a subproblem can be formulated

as

x2 = arg min
x2

g(x2, x1, s) (17)

s.t. x2 ∈ X
M−d .

Relaxing the problem from (17) we have

x2,lb = arg min
x2

g(x2, x1, s) (18)

s.t. x2 ∈ J,

where J is the convex hull of XM−d .
If the optimal value of (18) is larger than a known upper bound ǧ on

the solution of (15), then all members in the discrete set which include
the previously fixed vector x1 can be excluded from the search process.

By this strategy we intend to exclude most of the candidates from
the possible solution set, such that the number of residual candidates is
only a small fraction of its total number and, thus, they can be evaluated
via exhaustive search.

b) Branch-and-Bound Initialization

The branch-and-bound algorithm converges faster when we can
compute as early as possible an upper bound that permits many
exclusions. Therefore, it is recommended to have an initialization step
where an upper-bound ǧ < ∞ is found before beginning with the search
process.

With that in mind, for initialization, the problem described in (13) is
solved. This way, xlb and g(xlb) = MSElb are obtained. After mapping
xub and ǧ = MSEub are determined.

Note that, if the continuous solution of (13) is in the feasible set,
upper and lower bound are equal which can be expressed as

xub = xlb = xopt −→ g(xlb) = ǧ. (19)

This would mean that the optimal solution is found already by the
approach from subsection III-B1 and the tree search process can be
skipped.

c) Subproblems

When the condition from (19) is not met, there is the need to search
for the optimal value of x. To accomplish this task, it is necessary to
solve subproblems, as first mentioned on III-B2a. The equations that
define the subproblems are derived below.

First the precoding vector is divided in a fixed vector of length 2d
and a variable vector according to

xr =
[
xTr,fixed , x′Tr

]T
. (20)

With this, the MMSE problem formulation reads as

min
x′r , f ′

E{ ‖ f ′(H r
[
xTr,fixed , x′Tr

]T
+ wr) − sr ‖

2
2 } (21)

subject to: A′x′r ≤ b′, f ′ > 0,

where A′x′r ≤ b′ restricts the elements of the precoding vector to be
inside of the set J and will be detailed in what follows. The channel
can be rewritten accordingly as H r =

[
H r, fixed , H′r

]
. Then the problem

can be cast as

min
x′r , f

′
E{ ‖ f ′(H′r x′r + H r, fixed xr, fixed + wr) − sr ‖

2
2 } (22)

subject to: A′x′r ≤ b′, f ′ > 0,



and an equivalent problem is given by

min
x′r , f ′
‖ f ′H′r x′r − sr + f ′H r, fixed xr, fixed ‖

2
2 + f ′2E{wT

r wr } (23)

subject to: A′x′r ≤ b′, f ′ > 0.

The objective function is not jointly convex in f ′ and x′r, as shown for
the conventional MMSE cost function in the appendix.

However, it is possible to shift the scaling factor from the objective
in the polyhedron constraint as done in Section III-B1. This essentially
means that the feasible set is scaled depending on the value of f ′.
Accordingly, we substitute the variable with x′r f ′ = x′r, f . Using x′r, f ,
the equivalent problem reads as

min
x′r, f , f

′
‖H′r x′r, f − sr + f ′H r, fixed xr, fixed ‖

2
2 + f ′2E{wT

r wr } (24)

subject to: A′x′r, f ≤ f ′b′, f ′ > 0.

Rearranging the constraint yields

min
x′r, f , f

′
‖H′r x′r, f − sr + f ′H r, fixedxr, fixed ‖

2
2 + f ′2E{wT

r wr } (25)

subject to: [A′ − b′]
[
x′r, f
f ′

]
≤ 0, f ′ > 0,

and finally

min
x′r, f , f

′
‖H′r x′r, f − sr + f ′H r, fixed xr, fixed ‖

2
2 + f ′2E{wT

r wr } (26)

subject to: R′
[
x′r, f
f ′

]
≤ 0, f ′ > 0,

where R′ is obtained by picking the last 2 (M − d) columns of R
introduced in (14).

Note that the problem in (26) is convex because of the convex
constraints and its objective function which is jointly convex in f ′

and x′r, f as can be seen in the second part of the appendix, where the
Hessian is examined.

d) MMSE Branch-and-Bound Precoding Algorithm

In this subsection a branch-and-bound algorithm is proposed which
solves (7) with the tools presented in the previous subsections. As
mentioned before, the first step is the initialization, where the problem
from (13) is solved and the condition xlb = xub is evaluated. If the
condition is met, the algorithm returns xlb. Otherwise, there is the
need for the tree search process described in the sequel.

For the tree search process a breadth first search is devised and
the subproblems are solved with considering partially fixed precoding

vectors xr =
[
xTr,fixed , x′Tr

]T
, where xr,fixed has length 2d as pre-

viously stated. Accordingly, the matrices R and H r are divided as
R = [Rfixed , R′] and H r =

[
H r,fixed , H′r

]
, where Rfixed and H r,fixed

contains the first 2d columns of R and H r.
Using R′ and H′r, the subproblem (26) for the lower-bounding step

is solved. Mapping the solution from (26) to the discrete set yields
xr,ub. Based on xr,ub, the MSE is minimized with choosing

f ′ =

sTr H r

[
xr,fixed
xr,ub

]
��������H r

[
xr,fixed
xr,ub

] ��������2
2
+ E{wT

r wr }

. (27)

The corresponding MSE serves as an upper bound on the optimal value
of the original problem (MSEub).

In case the lower bound conditioned on xr,fixed is higher than any
upper bound on the original problem, xr,fixed cannot be part of the
solution and every member of the discrete solution set which includes
xr,fixed can be excluded from the search process. The steps of the
method are detailed in Algorithm 1.

Algorithm 1 Proposed B&B Precoding for solving (7)

initialization:
Given the channel H and transmit symbols s compute a valid upper
bound ǧ on the problem in (7), by solving (13) followed by a
mapping to the closest precoding vector x ∈ XM and computing
its MSE. If the solution of (13) belongs to XM it is the optimal.
Otherwise,

define the first level (d = 1) of the tree by Gd := X

for d = 1 : M − 1 do
Partition Gd in xfixed,1, . . . , xfixed, |Gd |

for i = 1 : |Gd | do

Express xfixed,i in real valued notation xr,fixed,i
Conditioned on xr,fixed,i solve (26) to find x′r, f and f ′

Determine the lower bound MSElb :=

‖H′r x′r, f − sr + f ′H r, fixedxr, fixed,i ‖
2
2 + f ′2E{wT

r wr }

Extract x′r =
x′
r , f

f ′

Rewrite x′r in complex notation as x′lb

Map x′lb to the discrete solution with the closest
Euclidean distance: x′ub(x

′
lb) ∈ X

M−d

Express x′ub in real valued notation x′r,ub
Compute f ′ according to (27)
With x′r,ub and f ′, the upper bound is MSEub(x r,fixed,i) :=�������� f ′H r

[
xr,fixed,i
x′r,ub

]
− sr

��������2
2
+ f ′2E{wT

r wr }

Update the best upper bound with:
ǧ = min (ǧ,MSEub)

end for
Construct a reduced set by comparing conditioned
lower bounds with the global upper bound ǧ

G′
d

:=
{
x′lb,i |MSElb(x

′
lb,i ) ≤ ǧ, i = 1, . . . , |Gd |

}
Define the set for the next level in the tree: Gd+1 := G′

d
× X

end for

Search method for the ultimate level d = M ,

Partition G1 in xfixed,1, . . . , xfixed, |G1 |

Express xfixed,i with real valued notation xr,fixed,i and compute f ′

with (27)

MSE(xfixed,i ) :=
���� f ′H r xr,fixed,i − sr

����2
2 + f ′2E{wT

r wr }

The global solution is :
xopt = arg min

xfixed,i∈G1
MSE(xfixed,i )

IV. NUMERICAL RESULTS

In what follows, the proposed methods are compared with the state-
of-the-art algorithms in terms of uncoded BER, where Gray-coding is
employed. The channel matrix coefficients are considered to be i.i.d.
with hk ,m ∼ CN(0, σ2

h
), and the noise samples are complex Gaussian

random variables with w ∼ CN(0, σ2
w I ). The SNR is defined by

SNR = ‖x ‖
2
2

σ2
w

. All numerical computations rely on 100 random channel
realizations.

The proposed methods are compared with the following state-of-the-
art precoding algorithms:

1. The MSM-Precoder [5], which corresponds to solving an LP with
computational complexity in the order of O((2M + 1)3.5), when
using interior point methods (IPM)
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2. The Phase Zero-forcing precoder with constant envelope [3]
with O(K2M), whose precoding vectors are subsequently phase
quantized

3. The CIO precoder implemented via CVX [4], which corresponds
to solving a second order cone program with O((2M + 1)3.5),
when using IPM

4. The MMDDT B&B precoder [9] in which the sub problems
correspond to solving a LP with O((2M + 1)3.5), when using
IPM

A. 1-bit DAC

In this subsection we evaluate the performance of the proposed
algorithms with 1-bit quantization. In this case, both, the data and the
transmit vector symbols are QPSK, which means αs = 4 and αx = 4.

Two different scenarios are considered. First, we compare only the
BER performance of the proposed branch-and-bound approach with the
algorithm developed in [7], for K = 2 users and M = 4 antennas at
the BS. The BER performances are illustrated in Fig. 2.

Then we consider K = 3 users and the number of antennas at the
BS M = 12 and compare both proposed methods with state-of-the-art
approaches. The BER performances are illustrated in Fig. 3. Moreover,
the computational complexity in terms of the average number of
evaluated bounds is shown in Fig. 4.

Fig. 2 confirms the superiority of the MMSE criterion against
MMDDT for low SNR. However, for high SNR, the MMDDT criterion
is asymptotically optimal in the sense of BER and yields, as expected,
a lower BER.

The results shown in Fig. 3 illustrate a significant gain in BER
when using the optimal branch-and-bound method in comparison to
suboptimal methods. Moreover, Fig. 3 confirms the suitability of the
MMSE criterion for low SNR. Besides that, the results indicate that
the proposed suboptimal approach termed MMSE Mapped surprisingly
outperforms other suboptimal state-of-the-art algorithms in terms of
BER performance.

Moreover, Fig. 4 shows that the number of evaluated bounds of the
proposed B&B method is significantly smaller than the one from [7]
for low SNR, which underlines the superiority of our proposed method
to the existing ones for low SNR.

By using IPM, the subproblems can be solved with a computational
complexity in the order of O(n3.5), with n ≤ (2M +1), cf. [11]. Based
on Fig. 4, the average number of subproblems is always significantly
smaller than the total number of candidates to be evaluated in the
exhaustive search. Taking into account that each candidate evaluation in
the exhaustive search corresponds to a complexity of O(K2M) justifies
the utilization of the proposed method when the optimal precoding
vector is desired.

B. Phase Quantization

In this subsection the performance of the proposed algorithms with
phase quantization is evaluated. In that case, both, the data and the
transmit symbol alphabet are considered to be 8-PSK, meaning αs = 8
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and αx = 8. We consider K = 2 users and the number of antennas at
the BS is M = 6. The corresponding BER performances are illustrated
in Fig. 5.

As expected, the proposed branch-and-bound algorithm shows a sig-
nificantly lower BER than existing suboptimal algorithms and surpasses
the optimal precoder with the MMDDT criterion [9] for low SNR as for
the 1-bit case. Moreover, surprisingly the proposed mapped precoder
yields a slightly lower BER than the existing suboptimal algorithm
presented in [5], which relies on the MMDDT criterion.

V. CONCLUSIONS

Two precoding algorithms based on the MMSE criterion for phase
quantization and PSK modulation were proposed. The first algorithm
provides a suboptimal solution and the second computes the opti-
mal solution via branch-and-bound method. The proposed optimal
algorithm outperforms the state-of-the-art techniques for this class of
precoding in terms of uncoded BER for low and medium SNR values.
Numerical results confirm the efficiency of the proposed branch-and-
bound strategy.

APPENDIX - CONVEXITY ANALYSIS

The Conventional MMSE Cost Function With the Scaling Factor

The corresponding real valued function of the equivalent MMSE cost
function including the scaling factor reads as

J(xr, f ) = f 2xTr HT
r H rxr − 2 f xTr HT

r sr + f 2E{wT
r wr }. (28)
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The Hessian is constructed based on the partial derivatives given by

Γ =
∂2J(xr, f )

∂xr∂x
T
r
= 2 f 2HT

r H r, (29)

ε =
∂2J(xr, f )

∂ f 2 = 2‖H rxr ‖
2
2 + 2E{wT

r wr } ≥ 0,

η =
∂2J(x, f )

∂xr∂ f
= 4 fHT

r H rxr − 2HT
r sr.

Positive semi-definiteness of the Hessian is established when the
following inequality holds

vT Γv + ν2ε + 2νηT v ≥ 0 for all ν, v. (30)

Assuming that Γ � 0, the minimum value of (30) is given by
ν2ε − ν2ηT Γ−1η. For Positive semi-definiteness the minimum cannot
be smaller than zero which yields the condition

ε ≥ ηT Γ−1η. (31)

Inserting the partial derivatives gives

2‖H rxr ‖
2
2 + 2E{wT

r wr } ≥
1

2 f 2η
T (HT

r H r)
−1η, (32)

2‖H rxr ‖
2
2 + 2E{wT

r wr } ≥

8xTr HT
r H rxr −

8
f
xTr HT

r sr + 2sTr H r(H
T
r H r)

−1HT
r sr, (33)

which can be rearranged as

8
f
xTr HT

r sr ≥ 6xTr HT
r H rxr + 2sTr H r(H

T
r H r)

−1HT
r sr − 2E{wT

r wr }.

We conclude that the MMSE cost function is in general not jointly
convex in xr and f .

The Partial MMSE Cost Function
The MMSE cost function for the problem formulation with the f ′

scaled polyhedron and partially fixed precoding vector is given by

J
(
x′r, f , f

′
)
=

������H′rx′r, f − sr + f ′H r, fixedxr, fixed

������2
2
+ f ′2E{wT

r wr }.
(34)

As in the previous subsection the Hessian can be constructed with the
partial derivatives which are now given by

Γ =
∂2J(x′r, f , f

′)

∂x′r, f ∂x
′T
r, f

= 2H′Tr H′r, (35)

ε =
∂2J(x′r, f , f

′)

∂ f ′ 2 = 2‖H r, fixedxr, fixed) ‖
2
2 + 2E{wT

r wr } ≥ 0,

η =
∂2J(x′r, f , f

′)

∂x′r, f ∂ f
′
= 2H′Tr H r, fixedxr, fixed.

Analogous to the previous subsection we assume that Γ � 0 and then
(31) is a sufficient condition for convexity. In this case, (31), after
including the partial derivatives (35), can be rearranged to

E{wT
r wr } ≥ xTr, fixedH

T
r, fixed(H

′
r(H

′T
r H′r)

−1H′Tr − I )H r, fixedxr, fixed.
(36)

Convexity is established by showing that the RHS of (36) is always
smaller or equal to zero. This can be shown by considering

vT (H′r(H
′T
r H′r)

−1H′Tr − I )v ≤ 0, (37)

which holds for all v, since H′r(H
′T
r H′r)

−1H′Tr is a projection matrix
where the eigenvalues can only be one or zero.
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