
A framework for building secure software-defined
wireless sensor networks

Cézar Murilo G. de Toledo, Marcos A. Simplicio Jr. and Cintia Borges Margi

Abstract—Software-Defined Wireless Sensor Network (SD-
WSN) refers to a paradigm that brings the flexibility of Software
Defined Networking (SDN) to Wireless Sensor Network (WSN).
Basically, an SDWSN consists in a architecture where a logically
centralized controller manages data flows according to high level
policies. Although this is a promising approach for giving admin-
istrators further control over the networked sensors’ behavior, it
also creates some security issues. In this paper, we identify attacks
that are particular to the SDWSN paradigm, aiming to analyze
the main threat vectors to which the architecture is exposed.
Then, we present a security framework designed to mitigate such
attacks and discuss its effectiveness.

I. Introduction

Software Defined Networking (SDN) creates a network
logic decoupled from the underlying hardware and managed
by a remote control plane. The SDN paradigm considers three
logically connected planes: data, control, and application. The
data plane comprises the switches, responsible for forwarding
packets. The control plane is run by the controller, which
defines how switch should handle packets. The application
plane is where users interact with the controller, developing
applications and managing the network.

The SDN paradigm has become more prevalent in the last
years, leading to many network deployments with support
to the Southbound-based OpenFlow protocol. Unfortunately,
however, the design of OpenFlow (OF) is not oriented to-
ward wired networks [1]. In particular, it assumes high-speed
switches that (1) can contact the network controller as often
as necessary, and (2) can store (possibly large) tables with
flow rules. Hence, OpenFlow does not always cope with
the needs of resource-constrained environments like Wireless
Sensor Networks (WSNs). This leads to the need of solutions
able to deal with low speed network protocols (e.g., IEEE
802.15.4) and also with limited processing power and memory
availability on network nodes. Indeed, these gaps have led to
many research efforts focused on creating a Software-Defined
Wireless Sensor Network (SDWSN) environment [2], [3].

Basically, SDWSNs aim at providing dynamic and scalable
routing algorithms for accommodating the different needs of
Internet-of-Things (IoT) applications running on the same
WSN environment. Albeit promising, SDWSNs are prone to
security vulnerabilities inherited from SDNs, such as link
spoofing, access control abuse, denial of service (DoS), and
man-in-the-middle (MitM). At the same time, they are also

Cézar M. G. Toledo, Marcos A. Simplicio Jr., Cintia B. Margi. Universidade
de São Paulo, Brasil. E-mail: {cmurilo, mjunior, cbmargi}@larc.usp.br. This
work was funded by CAPES (Finance Code 001), FAPESP (grants 13/25977-7
and 2018/12579-7) and CNPq (grant 301198/2017-9).

prone to WSN-related attacks, including sink holes and ad-
ditional forms of DoS and MitM. Hence, the widespread
adoption of SDWSN technologies depends at least in part on a
robust security framework for addressing such threats. In the
next section we identify relevant attacks against SDWSNs,
using the open-source IT-SDN [2] as a basis for our analysis.

II. SDWSNs vulnerabilities: attacks against IT-SDN

One vulnerability of SDWSNs, also present in IT-SDN, is
the absence of authentication and authorization mechanisms.
This means that new nodes (including attackers’) can be added
at will. This leads to three types of attacks, as follows.

A first issue is Man-in-the-middle (MitM) attacks, in which
an intruder controls all traffic between two honest nodes. The
intruder can then inject fake data into the communication,
as well as eavesdrop the exchanged packets. This violates
not only the communications’ integrity and authenticity, but
also break the confidentiality of application data (e.g., sensor
readings) and control information (e.g., the network’s topology
and policies). In particular, in source-routed frameworks [2]
this issue leaks information about existing network links, as
well as about preferential routes for each network source
and/or destination. The attacker can then build an accurate
network fingerprint, which is useful for building subsequent
attacks: e.g., the attacker can isolate one node by taking down
its neighbors, thus affecting the network’s availability. Those
node’s data can then be replaced with forged data.

Another attack consists in exploiting the underlying neigh-
bor discovery protocol for impersonating the network con-
troller. Specifically, if a malicious node announces itself as the
controller, the victims are unable to notice that this information
is fake. Besides creating a DoS effect from the original
controller’s perspective, the malicious controller can install any
flow rules in the network’s sensor nodes. The attacker can then
steal application data and/or stop nodes from receiving data.

Finally, sink nodes can be falsified whenever the SDWSN
routing approach is such that the controller adjusts routing
rules so that all packets are delivered to the nearest sink,
usually relying flow identifiers (flow-id) for this purpose [2].
In this scenario, the lack of authentication mechanisms allows
a false sink node to advertise itself as one of the targets for
a specific flow-id. Consequently, such a malicious sink gains
access to the application’s intended data, creating a sinkhole.

III. Securing SDWSNs

To the best of our knowledge, WS3N [4] is one of the few
existing works that deals with security in SDWSNs. However,

IX Conferência Nacional em Comunicações, Redes e Segurança da Informação – ENCOM 2019, 18-20 de Outubro, Petrolina–PE

41



WS3N has three main shortcomings [4]: (1) it generates many
control packets, leading to poor scalability (e.g., a packet
delivery rate below 10% for 64 nodes); (2) its bootstrapping
mechanism is vulnerable to spoofed MAC address attacks, so
malicious nodes can obtain valid certificates; and (3) it tackles
key establishment between sensors and controllers, but no end-
to-end security is provided between sensor and sink nodes.

To address such limitations of WS3N, we describe a secure
and scalable SDWSN framework that, building upon IT-SDN,
provides data confidentiality, integrity and authenticity. The re-
sulting system thwarts the attacks from Sec. II while avoiding
the aforementioned limitations of WS3N. Our proposal builds
upon iSMQV [5], an authenticated key agreement (AKA)
protocol which was designed specifically with WSNs in mind.
Is assumes that trusted nodes are (pre-)loaded with valid
credentials, including a public key. Nodes carrying a certified
public key can, when entering the network, run iSMQV to
establish a shared key with the controller; such nodes are
then considered authorized to participate in security-enabled
routes. Nevertheless, non-authorized nodes may also be toler-
ated in network, acting as forwarding devices if desired. The
application layer can then define which types of nodes can
participate in the routes for a given flow, nodes responsible for
that flow indicate their preference by setting the corresponding
security flags in their packets. This preference is then enforced
by the controller: if a secure route is required, the controller
includes only authorized nodes in the corresponding routes.
This enables a more flexible and efficient route management,
in which security can be prioritized whenever needed.

To indicate the end-to-end security mode to be employed,
we use two bits (out of 40) from the packet header employed
in the IT-SDN framework. This enables four possible security
modes for data packets sent by sensor nodes to sinks, and also
for control flow messages exchanged between sensor nodes
and controllers: (00) no security; (01) authentication only,
meaning that a message authentication code is employed for
all relevant messages; (10) authentication and encryption, in
which case an authenticated-encryption mode is employed for
relevant messages; (11) authentication and encryption in a
route containing only authorized nodes. The flowchart that
describes the system’s behavior is shown in Fig. 1: after
running a neighbor discovery protocol and installing flow rules
for reaching the (possibly fake) controller, each node run the
AKA protocol with its public key; control flow requests may
then include security services, enforced by the controller when
building a suitable route; source and sink nodes then run the
AKA protocol, using the controller as a proxy to enable a
sink-to-source communication;the source node encrypts and/or
authenticates the packets with the established symmetric keys.

The aforementioned attacks are mitigated by the proposed
approach as follows. First, MitM attacks are addressed via
the secure route flag: only authorized nodes participate in
the transmission of packets. Actually, even if non-authorized
nodes are allowed to participate in the data transmission,
encryption services prevent data leakage, while their authenti-
cation thwarts forgery attempts. Controllers are authenticated

Sensor Node Sink Node Controller Node

Neighbour Discovery
Neighbour Discovery

AKA
AKA

Control Flow Request

Authorized 
Sensor Node

Yes

No

Drop Packet
Authorized      
Sink NodeNoDrop packet

Yes
Sensor node’ AKA data 

Calculate  symmetric key

Sink node’ AKA data
Encrypted/Authenticated  packet

Fig. 1. Proposed flow for enabling a secure SDWSN.

by authorized nodes as soon as the system is set-up. Hence,
malicious controllers are quickly detected and prevented from
configuring invalid routes. Finally, all provided security ser-
vices rely on authorized nodes, which are authenticated by
the source nodes during route construction (attacks that infect
such nodes are out of scope).As a result, as long as authorized
sinks are not compromised, no application data is leaked.

IV. Conclusions
One challenge faced by SDWSN solutions, is that they end

up combining the attack surface of both WSNs and SDNs.
Despite the existence of many studies that deal with security
vulnerabilities in either WSNs or SDNs, solutions capable of
handling the security of SDWSNs are scarce. In this paper, we
tackle this open issue first by listing some of the most relevant
SDWSN-related attacks. We discuss how such attacks can lead
to stolen or tampered data in a concrete SDWSN solution, the
open-source IT-SDN framework. Then, we propose a solution
that, building upon IT-SDN’s properties and on lightweight
key management protocols, enforces end-to-end authenticity,
confidentiality and integrity to data and control packets. When
compared to related works (e.g., [4]), our proposal provides
on-demand establishment of security relationships between
sensor nodes, as well as between nodes and controller. Also,
the proposal allows nodes unable to establish such a security
relationship to participate in delivering packets, as long as
authorized by the corresponding application. Future works in-
clude the experimental analysis of the proposal’s performance.

References
[1] I. Akyildiz, P. Wang, and S. Lin, “Softwater: Software-defined networking

for next-generation underwater communication systems,” Ad Hoc Net-
works, vol. 46, pp. 1–11, 2016.

[2] R. Alves, D. Oliveira, G. Núñez, and C. Margi, “IT-SDN: Improved
architecture for SDWSN,” in XXXV Brazilian Symposium on Computer
Networks and Distributed Systems, 2017.

[3] O. Flauzac, C. Gonzalez, A. Hachani, and F. Nolot, “SDN based archi-
tecture for IoT and improvement of the security,” in 29th Int. Conf. on
Advanced Information Networking and Applications Workshops (WAINA).
IEEE, 2015, pp. 688–693.

[4] R. Alves, D. Oliveira, G. Pereira, B. Albertini, and C. Margi, “WS3N:
Wireless secure SDN-based communication for sensor networks,” Secu-
rity and Communication Networks, vol. 2018, 2018.

[5] M. Simplicio Jr, M. Silva, R. Alves, and T. Shibata, “Lightweight and
escrow-less authenticated key agreement for the Internet of Things,”
Computer Communications, vol. 98, pp. 43–51, 2017.

IX Conferência Nacional em Comunicações, Redes e Segurança da Informação – ENCOM 2019, 18-20 de Outubro, Petrolina–PE

42


