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Optimal Precoding for Multiuser MIMO Systems
With Phase Quantization and PSK Modulation via

Branch-and-Bound
Erico S. P. Lopes, and Lukas T. N. Landau, Member, IEEE,

Abstract—With an increasing number of antennas in MIMO
systems, the energy consumption and costs of the corresponding
front ends become relevant. In this context, a promising approach
is the consideration of low-resolution data converters. In this
study we propose an optimal precoding algorithm constrained to
constant envelope signals and phase quantization that maximizes
the minimum distance to the decision threshold at the receivers
using a branch-and-bound strategy. The proposed algorithm is
superior to the existing methods in terms of bit error rate. Nu-
merical results show that the proposed approach has significantly
lower complexity than exhaustive search.

Index Terms—Precoding, low-resolution quantization, MIMO
systems, branch-and-bound methods.

I. INTRODUCTION

One challenge in the wireless communications area is the
minimization of the energy consumption and cost without
major bit error rate performance compromise. In this context,
systems with low-resolution quantizers are promising, as the
energy consumption of data converters scales exponentially
with the resolution in amplitude [1].

Several strategies for precoding with low-resolution quan-
tizers exist. Linear approaches such as the Zero-forcing (ZF)
[2] and Linear-MMSE method [3] have a relatively low com-
plexity. Nevertheless, these methods often yield a detection
error floor. Moreover, nonlinear precoders have been designed
with different design criteria for achieving lower bit-error-rate
(BER). A conventional design criterion is the MSE which is
considered in the branch-and-bound (B&B) algorithm in [4].
Another widely used design criterion in given by the max-
imization of the minimum distance to the decision threshold
(MMDDT) [5], [6], [7], [8], which is promising in combination
with hard detection. In [7] an optimal precoding algorithm was
presented for the MMDDT criterion and 1-bit quantization at
transmitter and receiver (QPSK). In [8] a suboptimal algorithm
is developed for the MMDDT criterion and 2@-PSK symbols at
each transmit antenna for QAM and PSK modulation schemes.

In the present study, we generalize the work of [7] which
uses 1-bit quantization, for phase quantizers with arbitrary
number of phases at the transmit antennas and PSK mod-
ulation. This extension should be considered as non trivial
because in the case of PSK, each symbol cannot be decom-
posed in independent real and imaginary part as done in the
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Fig. 1: Multiuser MIMO downlink with phase quantization and hard detection

1-bit case. The proposed precoder is optimal in terms of the
MMDDT criterion, obtained by using a sophisticated branch-
and-bound strategy.

In contrast to the method presented in [8], which implies
a rounding step, the proposed algorithm finds the global
optimum. Rounding steps when used for computing the final
precoding vector causes BER performance degradation and
can generate error floors. Considering that the global optimum
has a maximized minimum distance to the decision threshold
the proposed method approaches the minimum symbol-error-
rate at high signal-to-noise ratio (SNR). Moreover, unlike
the problem formulation in [8] with 2@ different phases, the
proposed approach supports an arbitrary number of phase
quantizations. In the initial step of the proposed method the
relaxed problem is solved and rounded to the feasible set.
Subsequently the optimum is determined by a tree search
based algorithm.

The rest of the paper is organized as follows: Section II
describes the system model, whereas Section III establishes
the precoder’s objectives, explains the criterion and exposes
the problem formulation. In Section IV the proposed precoding
algorithm is described. Section V presents and discusses
numerical results, while Section VI gives the conclusions.

Regarding the notation, note that real and imaginary part op-
erator are also applied to vectors and matrices, e.g., Re {x} =
[Re {[x]1} , . . . ,Re {[x]" }]) .

II. SYSTEM MODEL

In this study, a single cell MU-MIMO downlink with
full channel state information at the base station (BS) is
considered, as illustrated in Fig. 1. On the BS there are "
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transmit antennas that serve  single antenna users. The data
symbol for the ith user B8 is a UB-PSK symbol taken from the
set S described by

S =
{
B : B = 4

9 c (28+1)
UB , for 8 = 1, . . . , UB

}
. (1)

The stacked vector with data symbols for the  users is
denoted by s = [B1, . . . , B ]) . The vector s is the input for
the precoder, where the transmit vector x = [G1, . . . , G" ]) is
constructed based on the channel. Due to the consideration of
a low-resolution data converter at the transmitter, the entries
from x are constrained to the set X, which describes an UG-
PSK alphabet given by

X =
{
G : G = 4

9 c (28+1)
UG , for 8 = 1, . . . , UG

}
. (2)

We consider analog pulse shaping filters at the BS and matched
filtering, followed by a phase quantization process at the
users. Moreover, we assume perfect synchronization. In the
sequel the equivalent discrete time description of the channel
is considered. A flat fading channel is considered, which is
described by the matrix N whose coefficients ℎ:,< are zero
mean i.i.d. complex Gaussian random variables, where : and
< denote the index of the user and the transmit antenna,
respectively. With this, for the noiseless case the received
signals are denoted by

I: =

"∑
<=1

ℎ:,< G<. (3)

In the sequel a stacked vector notation is used with z =

[I1, . . . , I ]) .
At the receiver the signal z is corrupted by additive noise,

which is denoted by the vector n, which is considered to
be a zero-mean i.i.d. complex Gaussian random vector with
covariance matrix f2

= O.
With this, the vector of received samples can described by

r = z+n, which is subsequently processed by a phase quantizer
that can be understood as a hard detector. In this regard, the
received signal r is elementwise uniformly phase quantized. It
is considered that number of quantization regions depends on
the modulation alphabet of the data S with cardinality UB . The
decision space is divided in UB decision regions, where each
possible symbol is associated with one region, as illustrated on
the right hand side of Fig. 1. The decision regions are circle
sectors with infinite radius and angle of 2\, where \ is given
by \ = c

UB
.

The output of the phase quantizer in stacked vector notation
ŝ = [B̂1, . . . , B̂ ]) is denoted by

ŝ = &(r) = &(z + n) = &(Nx + n), (4)

where &(·) denotes the quantization operator. Each possible
output represents an element of the transmit symbol alphabet
(ŝ ∈ ( ). With this, the vector s also represents the detected
symbols ŝ.

III. PRECODING OBJECTIVE

This section establishes the objective of the precoding
algorithm and exposes the problem formulation. The criterion

2\

B8

I8

�<

'4

\
B′8

F8

�<

'4

Fig. 2: Rotated coordinate system

for the precoder design is the maximization of the minimum
distance to the decision threshold or equivalently the maxi-
mization of the safety margin at the detectors. With this, the
aim is to find the vector x which yields the noiseless received
vector z, where the smallest distance to the decision threshold
is maximized. The objective can be expressed in the epigraph
form [9], which then corresponds to a linear objective function
with linear constraints. Taking into account the quantization at
each transmit antenna, the feasible set is discrete, which then
yields a non-convex problem.

This study, relies on the maximization of the minimum
distance to the decision threshold, denoted by n , for hard
detection of PSK symbols and the description of the objective
is equivalent to the one presented in [8]. Note that for
the special case of QPSK modulation the objective is also
equivalent to the objective utilized in [7].

By considering a rotation by arg{B∗
8
} = −qB8 of the coordi-

nate system, the symbol of interest is placed on the real axis,
as shown in Fig.2. This is done by multiplying both the interest
symbol B8 and the noiseless received signal I8 by 4− 9 qB8 = B∗

8

which reads

B
′
8 = B8B

∗
8 = 1, F8 = I8B

∗
8 . (5)

The distance of the rotated symbol F8 to the rotated decision
threshold is then expressed as

n8 = Re {F8} sin \ − |Im {F8}| cos \, (6)

as shown in detail in [8]. Since the considered rotation includes
also the decision thresholds the distance expression in (6)
holds also for I8 . The minimum of all n8 , for 8 = 1, . . . , "
is defined as n , which serves as the objective of the precoding
design. The objective of the algorithm is to construct the
transmit vector x that maximizes n . Based on a stacked vector
notation for F8 , namely w = diag(s∗)Nx, the equivalent
minimization problem reads[
xopt, n opt

]
= arg min

x∈X" , n
−n (7)

s.t. Re {NB∗x} sin \ − |Im {NB∗x} | cos \ ≥ n12 ,

where NB∗ = diag(s∗)N.

IV. PROPOSED BRANCH-AND-BOUND PRECODER

In this section we introduce the proposed precoder and
derive the bounding steps for the algorithm. It is divided
into three parts, the description of the mapped version of the
MMDDT Precoder (MMDDT-Mapped), a general introduction
of branch-and-bound precoding strategy and the description of
the MMDDT branch-and-bound algorithm.
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A. MMDDT-Mapped Precoder

One approach for finding a feasible solution of (7) is to
solve a relaxed version of the original problem followed by a
mapping process to ensure that the precoding vector is in the
feasible set of the discrete problem.

The relaxation is brought by replacing the set X" by its
convex hull, which then establishes convexity of the consid-
ered problem. The corresponding relaxed problem reads as[

xlb, n lb
]
= arg min

x, n
−n (8)

s.t. Re {NB∗x} sin \ − |Im {NB∗x} | cos \ ≥ n12 

Re
{
G<4

9 q8
}
≤

cos
(
c
UG

)
√
"

, for < = 1, . . . , " and

q8 =
2c8
UG

, for 8 = 1, . . . UG ,

which is basically presented before in [8]. With the equivalent
real valued notation, the problem in (8) can be expressed as
a linear program (LP). Note that unlike the algorithm in [8],
where UG is restricted to integer powers of 2, the problem
formulation (8) from above supports UG to be any integer
value. Subsequently the continuous solution xlb is quantized
to the point in X" with the shortest Euclidean distance.

The optimal value of (8) is always a lower bound to the
optimal value of the original problem (7). Mapping to the
feasible set yields a valid solution xub and the corresponding
value for −n provides an upper bound on the optimal value of
the original problem (7).

B. Introduction of the Branch-and-Bound method

This part of the algorithm is a tree search problem, where
a breadth first search is employed. For constructing the tree
we consider that each node has UG outgoing branches and that
the tree consists of " levels. The different levels in the tree
correspond to the transmit antennas and the nodes in the 3th
level represent 3 out of " entries of a precoding vector in the
discrete set.

For the computation of the discrete precoding vector we
consider a constrained minimization of a precoding objective
function 5 (x, s), which could be the negative minimum dis-
tance to decision threshold, given by

xopt = arg min
x
5 (x, s) s.t. x ∈ X" . (9)

A lower bound on 5 (xopt, s) can be obtained by relaxing
this problem, e.g., as described in (8). An upper bound on
5 (xopt, s) can be found by mapping the solution of the relaxed
version to X" and evaluating 5 (·) accordingly. The upper
bound on the optimal value is termed 5̌ .

Note that, since 5̌ ≥ 5 (xopt, s) ≥ 5 (xlb, s), the mapped so-
lution, cannot yield a better solution than the relaxed solution.

If we consider 3 fixed entries of x, the precoding vector
becomes x = [x)1 , x

)
2 ]
) , with x1 ∈ X3 . Then a sub problem

can be formulated with

x2,lb = arg min
x2

5 (x2, x1, s) (10)

s.t. Re
{
G<4

9 q8
}
≤

cos
(
c
UG

)
√
"

, for < = 1, . . . , " − 3

q8 =
2c8
UG

, for 8 = 1, . . . UG .

If the optimal value of (10) is larger (worse) than a known
upper bound 5̌ on the solution of (9), then all member in the
discrete solution set which include vector x1 can be excluded
from the search. In the context of the proposed tree search,
the vector x1 is defined by the different nodes in the tree.

C. MMDDT Branch-and-Bound algorithm derivation

In this section a branch-and-bound algorithm is proposed
which solves (9) by considering the problem in (8) for the
initialization and sub problems as given by (10) for computing
lower bounds.

In order to formulate a real valued problem matrix NA and
vector xA are defined as follows

xr =



Re {x1}
Im {x1}
Re {x2}
Im {x2}

...

Re {x" }
Im {x" }


, Nr =



Γ11 · · · Γ1"
Λ11 · · ·Λ1"

.

.

.

Γ 1 · · · Γ "
Λ 1 · · ·Λ "
Ψ11 · · · Ψ1"
Δ11 · · ·Δ1"

.

.

.

Ψ 1 · · ·Ψ "
Δ 1 · · ·Δ "



, (11)

with

� = Im {NB∗ } cos(\) − Re {NB∗ } sin(\)
� = Re {NB∗ } cos(\) + Im {NB∗ } sin(\)
	 = −Im {NB∗ } cos(\) − Re {NB∗ } sin(\)
� = Im {NB∗ } sin(\) − Re {NB∗ } cos(\).

(12)

With the real valued notation, the variable vector of the
optimization problem with length 2" + 1 can be denoted by
v = [n, x)r ]) . With this, the real valued problem reads as

vopt = arg min
v

a) v (13)

s.t. Gv ≤ 02 ,

{v2< + 9v2<+1} ∈ X, for < = 1, . . . , " ,

with

a = [−1, 0)2" ]
) , G =

[
12 ,Nr

]
.

Replacing the the discrete solution set by its convex hull yields
the relaxed problem given by

vlb = arg min
v

a) v s.t. [v ≤ p , (14)

with

[ =
[
G) , X)

])
X =

[
0"UG , X

′]
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X′ =
[
(O" ⊗ #1)) , (O" ⊗ #2)) , . . . , (O" ⊗ #UG )

)
])

#8 =
[
cos q8 ,− sin q8

]
p =

[
02 ,

cos( c
UG
)

√
"

1"UG

])
.

In the branch-and-bound method in each visited node sub
problems are solved due to v =

[
n, x)A1 , x

)
A2

]) , where xA1 is
a fixed vector of length 23, which belongs to the discrete set
according to v12< + 9v12<+1 ∈ X, for < = 1, . . . , 3.

The matrix [ can be expressed with the following structure
[ = [u1,[1,[2], where [1 contains 23 columns of [ and u1
is the first column of [. With this, the matrix [̃ =

[
u1,[2

]
and the vector ṽ =

[
n, x)A2

]) are composed. Using [̃ and ṽ the
sub problem for the lower-bounding step can be expressed as

ṽlb = arg min
ṽ

ã) ṽ s.t. [̃ṽ ≤ b, (15)

with ã =
[
−1, 0)2"−23

]) and b = p − [1xA1 . Solving (15)
provides a lower bound on the optimal value of the discrete
problem with the condition on xA1 . In case the lower bound
conditioned on xA1 is higher than any upper bound on the
original problem xA1 cannot be part of the solution and every
member of the discrete solution set which includes xA1 can be
excluded from the search. In the context of the tree search
it means that once a partial solution xA1 is excluded the
corresponding node and all its evolutions can be skipped. The
steps of the method are detailed in Algorithm 1. Note that the
computation of the optimal precoding vector in each symbol
period can correspond to an enormous computational complex-
ity. Nevertheless, the method might be a practical solution for
channels with large coherence time, where the finite number
of different precoding vectors can be precomputed and stored
as suggested in [10].

V. NUMERICAL RESULTS

For the numerical evaluation the uncoded bit error rate is
considered, where Gray-coding is used. The considered SNR
is defined by SNR =

‖x ‖22
#0

, where the spectral noise power
density #0 is equivalent to the noise sample variance f2

= , as
our model implicitly takes into account a receive filter with
unit energy normalization. For numerical computations  = 3
users and 1000 random channel realizations are considered.

The proposed method is compared with the following algo-
rithms from the literature: 1. The MSM-Precoder [8] consid-
ering phase quantization which implies solving an LP; 2. The
ZF precoder with constant envelope [2], where the entries of
the precoding vector are subsequently phase quantized; 3. The
phase quantized CIO precoder implemented via CVX [11],
which corresponds to solving a second order cone program.
The corresponding computational complexity is summarized
in Table I, where # denotes the number of evaluated bounds
in the proposed algorithm. In addition, the MMDDT precoder
with full resolution and per antenna power constrained is
considered, which yields a higher optimal value for n , because
relaxation of the feasible set results in an upper bound of the
optimal value of the original problem.

In Fig. 3 a conventional configuration is considered with
8-PSK symbols (UG = 8, UB = 8). For different numbers
of BS antennas (" = 7, " = 14) it is shown that the

Algorithm 1 Proposed B&B Precoding for solving (7)

initialization:
Given the channel N and transmit symbols s compute a
valid upper bound 5̌ on the problem in (7), e.g., by solving
(8) followed by a mapping to the closest precoding vector
x ∈ X"

Define the first level (3 = 1) of the tree by G3 := X

for 3 = 1 : " − 1 do
Partition G3 in x1,1, . . . , x1, |G3 |

for 8 = 1 : |G3 | do

Express x1,8 with stacked vector notation
due to (11) as xr 1,8
Conditioned on xr 1,8 solve ṽlb from (15)
Determine n = [ṽlb]1
Compute the lower bound: lb(x1,8) := −n ;

Map x2,lb to the discrete solution with the closest
Euclidean distance:
x̌2 (x2,lb) ∈ X"−3
Using x̌2 find the smallest (negative) distance to the
decision threshold ub(x1,8) :=

max
:

[����Im{
NB∗

[
x1,8
x̌2

]}���� cos \} − Re
{
NB∗

[
x1,8
x̌2

]}
sin \

]
:

Update the best upper bound with:
5̌ = min

(
5̌ , ub(x1,8)

)
end for
Build a reduced set by comparing conditioned
lower bounds with the global upper bound 5̌

G′
3

:=
{
x2,8 |lb(x2,8) ≤ 5̌ , 8 = 1, . . . , |G3 |

}
Define the set for the next level in the tree
G3+1 := G′

3
× X

end for
Search method for the ultimate level 3 = " ,
Partition G1 in x1,1, . . . , x1, |G1 |

n (x1,8) := min
:

[
Re

{
NB∗x1,8

}
sin \ − |Im

{
NB∗x1,8

}
| cos \

]
:

The global solution is
xopt = argmax

x1,8 ∈G1
n (x1,8)

proposed algorithm has a significantly lower BER than existing
suboptimal algorithms, which confirms the aptitude of the
MMDDT design criterion in the context of hard detection.
The proposed algorithm does not show an error floor, which
occurs for the corresponding suboptimal precoding algorithm
[8]. This indicates that the rounding step can correspond to a
significant performance degradation.

In addition, to demonstrate the flexibility of the proposed
framework, a more exotic configuration is considered in Fig. 4,
where G8 is a 3-PSK symbol using QPSK modulation at the
same time (UG = 3, UB = 4), which is compatible only with a
subset of the existing methods.

The proposed branch-and-bound method yields the same
solution as the exhaustive search but with a lower average
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TABLE I: Computational Complexity of the Algorithms

Algorithm Complexity

ZF-P [2] O( 2" )
CVX-CIO [11] O( (2" + 1)3.5)
MSM-Precoder [8] O( (2" + 1)3.5)
Proposed MMDDT B&B O(# (2" +1)3.5)

−10 −5 0 5 10 15 20 25 30

10−5

10−3

10−1

ZF-P phase quantized [2]
CVX-CIO phase quantized [11]
MSM phase quantized [8]
Proposed MMDDT B&B phase quantized
MMDDT per antenna power constr.

SNR [dB]

B
E

R

" = 7

" = 14

Fig. 3: Uncoded BER versus SNR,  = 3, UB = 8 and UG = 8

complexity. The complexity of the algorithm depends on
finding as early as possible a tight upper bound that permits
many exclusions of possible candidates while going down
the tree. Using interior point methods (IPM) for solving sub
problems (15) corresponds to a computational complexity of
O(;3.5), with ; ≤ (2" + 1). Note that the dimensions of the
sub problems decrease when climbing down the tree.

The computational complexity in terms of the number of
solved subproblems # is shown in Fig. 5. Fig. 5a illustrates
that the average number of solved sub problems (#) is only
a small fraction of the number of candidates which are
evaluated in the exhaustive search. Taking into account that
each candidate evaluation in the exhaustive search corresponds
to a complexity of O(" ), justifies the utilization of the pro-
posed branch-and-bound approach for determining the optimal
precoding vector. Moreover, # is illustrated in Fig. 5b and its
standard deviation (f# ) is shown in Fig. 5c, which indicates
that the complexity scales less than exponentially with " .

VI. CONCLUSIONS

An optimal algorithm for precoding constrained to constant
envelope and phase quantization for PSK modulation and hard
detection is proposed. The design criterion maximizes the
minimum distance to the decision threshold at the receivers.
The proposed algorithm outperforms the state-of-art tech-
niques for this class of precoding in terms of BER. Numerical
results confirm the efficiency of the proposed branch-and-
bound strategy.
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