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Abstract—In computational complexity and latency con-
strained emerging 5G applications, e.g., autonomous vehicles,
haptic communications and enhanced reality, secret key gener-
ation (SKG) at the physical layer could be considered as an
alternative to currently used key agreement schemes. In this
framework, we study the optimal subcarrier scheduling in multi-
carrier systems when a subset of the subcarriers are used for
SKG and the rest for data transmission, under both security and
power constraints. The amount of data that can be transmitted
with a single key is determined by the cryptographic suites
used, so that realistic key rate constraints can be identified.
This allows us to formulate the subcarrier allocation as a
subset-sum 0− 1 knapsack optimization problem that we solve
using i) the standard dynamic programming approach and ii)
a greedy heuristic approach of linear complexity. We show that
the proposed heuristic induces virtually no loss in performance.
Furthermore, a comparison with a baseline scheme in which
SKG and data transfer are performed sequentially, shows that
the proposed parallel approach offers gains in terms of efficiency.

I. INTRODUCTION

Many standard cryptographic schemes, particularly those in

the realm of public key encryption (PKE), are computationally

intensive, incurring considerable overheads and can rapidly

drain the battery of power constrained devices [1], [2]. For

example, in ultra reliable low latency communication systems

(URLLC) it is noted that ”for a URLLC service with higher

speed than 65kbps, the 3GGP Release 15 radio access network

(RAN) cannot fulfill the quality of service (QoS) requirement

while enforcing user plane integrity protection” [3]. Others

also point to using physical layer security to reduce the

resource overhead in URLLC [4].

As a consequence, the employment of physical layer se-

curity (PLS) approaches is currently being considered for

beyond fifth generation (B5G) systems. In this direction, a

promising alternative to PKE for key agreement is offered by

secret key generation (SKG) from shared randomness [5]. The

task of SKG from correlated observations was first studied in

[6] and [7]. A straightforward SKG approach can be built by

exploiting the reciprocity of the wireless fading coefficients

between two terminals during the channel coherence time [8].

Since this early work to propose such an SKG approach,

there have been implementations showing that the technique

is indeed practicable [9].

Focusing in this work on the scheduling of the physical

layer resources, we investigate the possibility of jointly per-

forming SKG and data transfer. The motivation behind this

study is to increase the transmission efficiency as data could

be immediately transmitted whenever they become available

without having to “wait” for key agreement to take place. In

future work we will explicitly incorporate latency estimates.

In the system model introduced in this work, we assume

that a block fading additive white Gaussian noise (BF-AWGN)

channel is used with multiple orthogonal subcarriers, a subset

of which is used for SKG and the rest for data transfer.

The specific contributions of this work are: i) determining

the optimal subcarrier allocation under security and power

constraints by formulating a subset-sum 0 − 1 knapsack

problem [10], which is solved using dynamic programming

techniques [11], and ii) proposing a heuristic solution with

linear complexity. We show that the heuristic approach –

according to which the strongest subcarriers in terms of SNR

should be used for data transfer and the weakest for SKG –

only induces a negligible penalty in terms of performance for

any realistic set of parameters. Our findings are supported

by numerical results, while the efficiency of the proposed

scheme is shown to be greater or similar to the efficiency

of an alternative approach in which SKG and data transfer

are sequentially performed, depending on the exact values of

the system parameters.

The paper is organized as follows: the general system model

is introduced in Section II, the data transfer and SKG scheme

is described in Section III. In Section IV, the efficiency

of the proposed hybrid approach is evaluated against that

of an alternative sequential approach, while conclusions and

directions for future work are presented in Section V.

II. SKG SYSTEM MODEL

In the basic SKG system model, depicted in Fig. 1 we

assume that two legitimate parties, referred to as Alice and

Bob in the following, wish to establish a symmetric secret key

using as a source of shared randomness the wireless fading co-

efficients. Throughout our work a rich Rayleigh multipath en-

vironment is assumed, such that the fading coefficients rapidly

decorrelate over short distances [8]. Furthermore, Alice and

Bob communicate over a block fading AWGN channel that
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Fig. 1: Alice and Bob exchange pilot signals over a Rayleigh

fading channel with realization H = [H1, . . . , HN ] in order

to distill a shared secret key.

comprises N orthogonal subcarriers. The fading coefficients,

denoted by Hj , j = 1, . . . , N , are assumed to be independent

and identically distributed (i.i.d), Hj ∼ CN (0, σ2). Although

in actual multicarrier systems neighbouring subcarriers will

typically experience correlated fading, in the present work

this effect is neglected as its impact on SKG has been treated

in numerous contributions in the past [12]–[14] and will not

enhance the problem formulation in the following Sections.

The SKG procedure encompasses three phases [6], [7]:

1) Advantage distillation: This phase takes place over two

periods. The legitimate nodes sequentially exchange constant

probe signals with power P on all subcarriers1, to obtain

estimates of their reciprocal CSI. Commonly, the received

signal strength (RSS) has been used as the source of shared

randomness for generating the shared key, but it is possible

to use the full CSI [15]. At the end of this phase, Alice and

Bob obtain observations XA,j , XB,j , respectively, on the j-th

subcarrier that can be expressed as:

XA,j =
√
PHj + ZA,j , (1)

XB,j =
√
PHj + ZB,j , (2)

j = 1, . . . , N , where by ZA,j , ZB,j we denote zero-mean,

unit variance circularly-symmetric complex AWGN random

variables, (ZA,j , ZB,j) ∼ CN (0, I2). At the end of this phase

the observations XA,j , XB,j , j = 1 . . . , N are quantized [16],

so that Alice and Bob distill binary vectors rA,j , rB,j , j =
1, . . . , N respectively.

2) Information reconciliation: Due to the presence of noise,

rA,j , rB,j , j = 1, . . . , N will differ. To reconcile discrepan-

cies in the quantizer local outputs, side information needs

to be exchanged via a public channel. Using the principles

of Slepian Wolf encoding, the distilled binary vectors can be

reconciled to corresponding codewords cj , j = 1, . . . , N , with

rA,j = cj + eA,j , (3)

rB,j = cj + eB,j . (4)

Numerous practical information reconciliation approaches

using standard forward error correction codes (e.g., LDPC,

BCH, etc.,) have been proposed [8], [15]. As an example, if

a block encoder with parity check matrix Q is used, then for

the errors in the local observations the following hold [15]:

QeTA,j = SA,j , (5)

QeTB,j = SB,j , (6)

1An explanation of the optimality of this choice under different attack
scenarios is discussed in [5].

where SA,j ,SB,j denote the syndromes of rA,j , rB,j with

respect to the codeword cj for j = 1, . . . , N . To perform

reconciliation, Alice (or Bob) transmit their corresponding

syndrome SA,j (SB,j), so that both parties can reconcile

rA,j , rB,j to cj , j = 1, . . . , N . In this work, we assume

that the reconciliation information (e.g., the transmission of

syndromes in the previous example) takes place on the same

subcarrier index, i.e., the syndrome SA,j is sent from Alice

to Bob on subcarrier with index j.

3) Privacy amplification: The secret key is generated by

hashing [c1‖ . . . ‖cN ], where [·‖·] denotes concatenation of

the corresponding binary vectors. To this end, modern hash

functions can be employed, e.g., SHA-256. The privacy am-

plification step ensures that the generated keys are completely

unpredictable by an adversary and that they have maximum

entropy (i.e., are uniformly distributed). Note that the final

step of privacy amplification, is executed locally without any

further information exchange.

Under the system model in Fig. 1, the SKG rate on any

subcarrier is (note that the noise variances are here normalized

to unity for simplicity) [8], [17]:

Rk = log2

(

1 +
Pσ2

2 + 1

Pσ2

)

, (7)

while the corresponding minimum necessary reconciliation

rate has been show to be h(HB,j |HA,j) [7]. In the following,

we will focus on optimizing the allocation of resources

(frequency and power) in multicarrier systems in which keys

are generated at the physical layer as described above.

III. HYBRID SKG AND DATA TRANSFER SYSTEM MODEL

We have discussed in Section II how Alice and Bob can

distill secret keys from estimates of the fading coefficients

in their wireless link. At the same time CSI estimates are

prerequisite in order to optimally allocate power across the

subcarriers and achieve high data rates2. As a result, a question

naturally arises: should the CSI estimates (obtained at the end

of the pilot exchange phase) be used towards the generation

of secret keys or towards the reliable data transfer, and,

furthermore, whether the SKG and the data transfer can be

inter-weaved?

In this paper, we are interested in answering this question

and shed light into whether following the exchange of pi-

lots Alice should transmit reconciliation information on all

subcarriers so that she and Bob can generate (potentially) a

long sequence of key bits, or, alternatively, perform informa-

tion reconciliation only over a subset of the subcarriers and

transmit data over the rest. We will call the former approach

a sequential scheme, while we will refer to the latter as a

parallel scheme. The two will be compared in terms of their

efficiency with respect to the achievable data rates

2As an example, despite the extra overhead, in URLLC systems advanced
CSI estimation techniques are employed in order to be able to satisfy the
strict reliability requirements.



As discussed in Section II, our physical layer system model

assumes Alice and Bob exchange data over a Rayleigh BF-

AWGN channel with N orthogonal subcarriers. Without loss

of generality the variance of the AWGN in all links is assumed

to be unity. During channel probing, constant pilots are sent

across all subcarriers [8], [17] with power P . Using the

observations (1), Alice estimates the channel coefficients as

Ĥj = Hj + H̃j , (8)

for j = 1, . . . , N where H̃j denotes an estimation error

that can be assumed to be Gaussian, H̃j ∼ CN (0, σ2
e) [18].

Under this model, the following rate is achievable on the j-th

subcarrier from Alice to Bob when the transmit power during

data transmission is pj [18]:

Rj = log2

(

1 +
gjpj

σ2
eP + 1

)

= log2(1 + ĝjpj), (9)

where we set ĝi =
gi

σ2

i,e
P+1

. As a result, the channel capacity

C =
∑N

j=1
Rj under the short term power constraint:

N
∑

j=1

pj ≤ NP, pj ≥ 0, ∀j ∈ {1, . . . , N}, (10)

is achieved with the well known waterfilling power allocation

policy pj =
[

1

λ
− 1

ĝj

]+

, where the water-level λ is estimated

from the constraint (10). In the following, the estimated

channel gains ĝj are – without loss of generality – assumed

ordered in descending order, so that:

ĝ1 ≥ ĝ2 ≥ . . . ≥ ĝN . (11)

As mentioned above, the advantage distillation phase of

the SKG process consists of the two-way exchange of pilot

signals during the coherence time of the channel to obtain

rA,j , rB,j , j = 1, . . . , N . On the other hand, the CSI estima-

tion phase can be used to estimate the reciprocal channel gains

in order to optimize data transmission using the waterfilling

algorithm. In the former case, the shared parameter is used

for generating symmetric keys, in the latter for deriving the

optimal power allocation. In the parallel approach the idea

is to inter-weave the two procedures and investigate whether

a joint data transfer and key generation scheme could bear

any advantages with respect to the system efficiency. While

in the sequential approach the CSI across all subcarriers will

be treated as a source of shared randomness between Alice

and Bob, in the parallel approach it plays a dual role.

A. Parallel Approach

In the parallel approach, after the channel estimation phase,

the legitimate users decide on which subcarrier to send the

reconciliation information (e.g., the syndromes as discussed

in Section II) and on which data (i.e., the SKG process here

is not performed on all of the subcarriers). The total capacity

has now to be distributed between data and reconciliation

information bearing subcarriers. As a result, the overall set of

orthogonal subcarriers comprises two subsets; a subset D that

is used for data transmission with cardinality |D| = D and a

subset D̄ with cardinality |D̄| = N−D used for reconciliation

such that, D ∪ D̄ = {1, . . . , N}.
Over D the achievable sum data transfer rate, denoted by

CD is given by

CD =
∑

j∈D

log2(1 + ĝjpj), (12)

while on the subset D̄, Alice and Bob exchange reconciliation

information at rate

CR =
∑

i∈D̄

log2(1 + ĝipi) (13)

and establish a secret key with rate CSKG

CSKG = |D̄|Rk = (N −D) log2

(

1 +
Pσ2

2 + 1

Pσ2

)

, (14)

after privacy amplification. The minimum rate necessary for

reconciliation has been theoretically derived in [7]. Here,

alternatively, we employ a more practical design approach

in the which the rate of the employed encoder is explicitly

taken into account. Noting that in a rate k
n

block encoder the

syndrome rate is n−k
n

, we define the parameter κ = n−k
k

that reflects the ratio of the reconciliation rate to the SKG

rate. For example, for a rate k
n

= 1

2
encoder, κ = 1, for

k
n

= 1

3
, κ = 2, while for k

n
= 1

4
, κ = 3. Note, in practice

κ needs to be chosen depending on the scenario and the

channel characteristics. Based on this discussion, we capture

the minimum requirement for the reconciliation rate through

the following expression:

CR ≥ κCSKG. (15)

Furthermore, to identify the necessary key rate, we note that

depending on the exact choices of the cryptographic suites to

be employed, it is possible to reuse the same key for the

encryption of multiple blocks of data, e.g., as in the cipher

block chaining (CBC) mode or in the Galois counter mode

(GCM). In practical systems, a single key of length 128 to

256 bits can be used to encrypt up to gigabytes of data. As

a result, we will assume that for a particular application it is

possible to identify the ratio of key to data bits, which in the

following we will denote by β. Specifically, we assume that

the following security constraint should be met

CSKG ≥ βCD, 0 < β ≤ 1, (16)

where, depending on the application, the necessary minimum

value of β can be identified. We note in passing that the case

β = 1 would correspond to a one-time-pad, i.e., the generated

keys could be simply x-ored with the data to achieve perfect

secrecy without the need of any cryptographic suites.

Accounting for the reconciliation rate and security con-

straints in (15) and (16) we formulate the following maxi-

mization problem:

max
pj ,j∈D

∑

j∈D

Rj (17)

s.t. (10), (15), (16),
∑

j∈D

Rj +
∑

i∈D̄

Ri ≤ C. (18)



(16) can be integrated with (15) to the combined constraint

∑

j∈D

Rj ≤

∑

i∈D̄

Ri

κβ
. (19)

The optimization problem at hand is a mixed-integer convex

optimization problem with unknowns both the sets D, D̄, as

well as the power allocation policy pj , j ∈ {1, . . . , N}. These

problems are typically NP hard and addressed with the use of

branch and bound algorithms and heuristics.

In this work, we propose a simple heuristic to make the

problem more tractable by reducing the number of free

variables. In the proposed approach, we assume that the

constraint (18) is satisfied with equality. The only power

allocation that allows this is the water-filling approach that

uniquely determines the power allocation pj and also requires

that the constraint (10) is also satisfied with equality. Thus, if

we follow that approach, we determine the power allocation

vector uniquely and can combine the remanining constraints

(18) and (19) into a single one as:

∑

j∈D

Rj ≤
C

κβ + 1
. (20)

The new optimization problem can be re-written as

max
xj∈{0,1}

N
∑

j=1

Rjxj (21)

s.t.

N
∑

j=1

Rjxj ≤
C

1 + κβ
. (22)

The problem in (21)-(22) is a subset-sum problem from the

family of 0 − 1 knapsack problems, that is known to be

NP hard [10]. However, these type of problems are solvable

optimally using dynamic programming techniques in pseudo-

polynomial time [10], [11]. Furthermore, it is known that

greedy heuristic approaches are bounded away from the

optimal solution by half [19].

We propose a simple greedy heuristic algorithm with linear

complexity, as follows. Let us assume that the estimated

channel gains, and, consequently, the rates Rj are ordered

in descending order (the ordering is a O(N logN) operation,

so if the gains are not ordered the overall complexity will be

dominated by the sorting operation). The data subcarriers are

selected starting from the best – in terms of SNR – until (22)

is not satisfied. Once this situation occurs the last subcarrier

added to set D is removed and the next one is added. This

continues either to the last index N or until (22) is satisfied

with equality. The algorithm is described in Algorithm 1.

The efficiency of the proposed parallel method – measured

as the ratio of the long-term data rate versus the average

capacity – is evaluated as:

Eparallel =

E

[

∑

i∈D

Ri

]

E[C]
. (23)

Algorithm 1: Heuristic Greedy Algorithm for (21)-(22)

1: procedure HEURISTIC(start, end, Rj)

2: j ← 1, C0 ← 0, RN+1 ← 0
3: while j ≤ N − 1 and Cj ≤ C

1+κβ
do

4: Cj ← Cj−1 +Rj

5: if Cj ≤ C
1+κβ

then

6: j ← j + 1
7: else do Cj ← Cj −Rj ;Rj ← 0; j ← j + 1
8: end if

9: end while

10: end procedure

This efficiency quantifies the expected back-off in terms of

data rates when part of the resources (power and frequency)

are used to enable the generation of secret keys at the

physical layer. In future work, we will compare the efficiency

achieved to that of actual approaches currently used in 5G by

accounting for the actual delays incurred due to the PKE key

agreement operations [4].

B. Sequential Approach

In the sequential approach data transfer and secret key

generation are two separate events; first, the secret keys are

generated over the whole set of subcarriers, leading to a sum

SKG rate given as

CSKG = N log2

(

1 +
Pσ2

2 + 1

Pσ2

)

. (24)

To estimate the efficiency of the scheme, we further need

to identify the necessary resources for the exchange of the

reconciliation information. We can obtain an estimate of the

number of transmission frames that will be required for the

transmission of the syndromes, as the expected value of the

reconciliation rate (i.e., it’s long-term value) E[CR]. The

average number of frames needed for reconciliation is then

computed as:

M =

⌈

κCSKG

E[CR]

⌉

, (25)

where ⌈x⌉ denotes the smallest integer that is larger than x.

The average number of the frames that can be sent while

respecting the secrecy constraint is:

L =

⌊

CSKG

βE[C]

⌋

, (26)

where ⌊x⌋ denotes the largest interger that is smaller than x.

The efficiency of the sequential method is then calculated as:

Esequential =
L

L+M
. (27)

IV. NUMERICAL RESULTS

In this Section we provide numerical evaluations of the

efficiency that can be achieved with the presented methods

(i.e., sequential and parallel) for different values of the main

parameters. With respect to the parallel approach, we provide



Fig. 2: a) Efficiency comparison for N = 12, the transmit Fig. 2: b) Efficiency comparison for N = 64, the transmit

SNR=10 dB and κ = 2. SNR=10 dB and κ = 2.

Fig. 3: Efficiency vs κ, for N = 24, SNR=10 dB.

numerical results of the optimal dynamic programming solu-

tion of the subset-sum 0− 1 knapsack problem, as well as of

the greedy heuristic approach presented in Algorithm 1.

The two subfigures of Fig. 2 show the efficiency of the

methods for N = 12, (Fig. 2a) and N = 64 (Fig. 2b)

while κ = 2 and P = 10. We note that the proposed

heuristic algorithm has a near-optimal performance (almost

indistinguishable from the red curves achieved with dynamic

programming). Due to this fact (which was tested across all

scenarios that follow) only the heuristic approach is shown in

subsequent figures for clarity in the graphs.

We see that for a small number of subcarriers (N=12,

typical for NB-IoT) and small β the efficiency of both the

parallel and the sequential approaches are very close to unity,

a trend that holds for increasing N . With increasing β, due

to the fact that more frames are needed for reconciliation

in the sequential approach (i.e., M increases), regardless

of the number of subcarriers, the parallel method proves

more efficient than the sequential. While the efficiency of the

sequential and parallel methods coincide almost until around

β = 0.01 for N = 12, for N = 64 the crossing point of the

curves moves to the left and the efficiency of the two methods

coincide until around β = 0.001. This trend was found to be

consistent across many values of N , only two of which are

shown here due to restrictions in space.

Next, in Fig. 3 the efficiency of the parallel and the sequen-

tial methods are shown for two different values of κ ∈ {1, 3}
for SNR = 10 dB and N = 24. It is straightforward to see

that they both follow similar trends and when κ increases the

efficiency decreases. On the other hand, regardless of the value

of κ they both perform identically until around β = 0.001.

Finally, in Fig.4, focusing on the parallel method, the

average size of set D is shown for different values of σ2
e and

transmit SNR levels (Fig. 4a) and κ (Fig. 4b), for N = 24.

As expected, in Fig. 4a we see when the SNR increases the

size of the set increases, too. This is due to the fact that more

power is used on any single subcarrier and consequently a

higher reconcilliation rate can be sustained. Regarding the

estimation error σ2
e of the CSI, it only slightly affects the

performance at high SNR levels. Hence more subcarriers have

to be used for reconciliation, and fewer for data. The SNR

level in Fig. 4b is set to 10 dB. The figure shows that when

increasing κ the size of set D decreases. This result can

be easily predicted from inequality (15), meaning, when κ

increases more reconciliation data has to be sent, hence fewer

subcarriers can be used for data. In both Fig. 4a and Fig. 4b

when β increases the size of set D decreases; this effect is a

consequence of constraint (22) as the data rate is decreasing

with β.

V. CONCLUSIONS

In this work we investigated the possibility of jointly

performing data transfer and SKG in a Rayleigh BF-AWGN



Fig. 4: a) Size of set D for different SNR levels and σ2
e Fig. 4: b) Size of set D for different values of κ when

when N = 24. N = 24.

environment. We studied the maximization of the data transfer

rate under power and security constraints, captured through

the following system parameters: a factor β, representing the

minimum ratio of the SKG to the data rate, and, a factor

κ representing the maximum ratio of the SKG rate over the

reconciliation rate. The proposed parallel method, in which

SKG and data transfer are inter-weaved, was shown to perform

equally well or better than a sequential approach in which

the two operations were separated. Furthermore, a significant

result is that although the optimal subcarrier scheduling is a

0 − 1 knapsack problem, with a potentially high bound on

complexity, it can be solved in linear time using a simple

heuristic algorithm with virtually no loss in performance.
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