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ABSTRACT

In this paper, we propose a dynamic oversampling technique
for asynchronous large-scale multiple-antenna systems with
1-bit analog-to-digital converters at the base station that is
suitable for sustainable internet of things and cellular net-
works. To the best of our knowledge, this is the first paper
to introduce a dynamic oversampling technique for such sys-
tems. The main idea is to sample the received signal at a
higher rate and only few weighted samples are chosen for fur-
ther signal processing. We apply the generalized eigenvalue
decomposition algorithm for linearly combining the samples
and performing dimension reduction. We investigate the pro-
posed technique in terms of the Bussgang theorem based sum
rate capacity. Numerical results show that with the proposed
dynamic oversampling technique the system can use small
number of processing samples to achieve the same sum rates
as the standard uniform oversampling technique while main-
taining the same power consumption.

Index Terms— Asynchronous large-scale MIMO, 1-bit
ADCs, dynamic oversampling, sum rate capacity

1. INTRODUCTION

The use of low-resolution analog-to-digital converters (ADCs)
in large-scale multiple-antenna or multiple-input multiple-
output (MIMO) systems, results in substantial reduction in
hardware complexity and energy consumption at the base sta-
tion (BS) [1,2]. In particular, the case of extreme 1-bit ADCs,
which consist of a simple analog comparator and consume
only a few milliwatts, is appealing since they do not require
automatic gain control (AGC). Hence the corresponding radio
frequency (RF) chains can be implemented with very low cost
and power consumption, which is important for large-scale
MIMO systems and future sustainable networks.

Several recent works have studied large-scale MIMO sys-
tems with 1-bit ADCs at the front-end. Channel estimation
is a challenging problem, since the magnitude and phase in-
formation about the received signal are severely distorted due
to the coarse quantization. Such problem has been investi-
gated in [3–5]. In terms of signal detection, the work in [6]

proposes an iterative detection and decoding (IDD) scheme,
which is based on the exchange of soft information from reg-
ular LDPC codes. Moreover, large-scale MIMO with 1-bit
ADCs can also be used in millimeter-Wave (mmWave) sys-
tems, which are favorable candidates for 5G cellular systems,
since they can achieve much larger bandwidths compared to
the sub-6 GHz. The authors in [7–9] have discussed channel
estimation, signal detection and precoding techniques in such
systems.

In this context, oversampling is a technique in which the
received signal is sampled at a rate faster than the Nyquist
rate. Recently, it has drawn much attention, since it can miti-
gate the performance loss caused by the coarse quantization.
The works in [10–12] have employed oversampling in 1-bit
MIMO systems and investigated its advantages in channel es-
timation and achievable rate. However, the extra samples re-
sulting from oversampling may increase the signal processing
cost at the baseband. To reduce such cost, a sliding window
based linear detector is proposed in [13], which performs sig-
nal detection in a short window rather than a whole block.

In this paper, we propose a dynamic oversampling tech-
nique for asynchronous large-scale MIMO systems with 1-bit
ADCs at the receiver. Different from prior works, we con-
struct an asynchronous 1-bit oversampled MIMO system and
propose a special oversampling technique, named dynamic
oversampling, that results in performance gains with small
number of processing samples. Two sampling rates are in-
troduced, the initial and the processing sampling rates. The
system is initially oversampled at a higher rate and after the
sample reduction operation only few weighted data samples
are processed for the further operation, where the dimension
reduction algorithm is based on the generalized eigenvalue
decomposition (GEVD). In the numerical results, we investi-
gate the benefits in terms of the lower bounds on the sum rate
capacity, which is calculated through the Bussgang decom-
position. We compare the performance of the system with
dynamic and standard uniform oversampling techniques.

The rest of this paper is organized as follows: section 2
shows the asynchronous system model of 1-bit oversampled
MIMO. Section 3 gives the derivation of the Bussgang-based



lower bound of sum rate capacity and illustrates the proposed
GEVD based dynamic oversampling technique. In section 4,
the simulation results are presented and section 5 concludes
the paper.

The following notations are used throughout the paper:
matrices are in bold capital letters while vectors in bold low-
ercase. In denotes an n × n identity matrix. Additionally,
diag(A) is a diagonal matrix only containing the diagonal ele-
ments of A and blkdiag(·) is a block-diagonal operation. The
vector or matrix transpose and conjugate transpose are rep-
resented by (·)T and (·)H , respectively. ⊗ is the Kronecker
product and det(·) is the determinant function. The convolu-
tion of f and g is written as f ? g.

2. SYSTEM MODEL

A single-cell multi-user large-scale multiple-antenna scenario
is considered in Fig. 1. In the network considered, Nt single-
antenna terminals simultaneously transmit signals to the BS
equipped with Nr receive antennas, where Nr � Nt. The
filtered oversampled signal y can be expressed as

y = Hx + n, (1)

where x is the NNt × 1 column vector transmitted by Nt
terminals for a block of symbols with length N . The vector x
is arranged as follows:

x = [x1,1 · · · xN,1 x1,2 · · · xN,Nt ]
T
, (2)

where xi,j corresponds to the transmitted symbol of terminal
j at time instant i. Each symbol is independent identically
distributed (IID) and has unit power so that E[|xi,j |2] = 1.
Furthermore, n is the filtered oversampled noise vector of size
MNrN × 1 expressed by

n = (INr
⊗G) w, (3)

where the noise matrix w ∼ CN
(
03MNrN , σ

2
nI3MNrN

)
contains IID complex Gaussian random variables with zero
mean and variance σ2

n. G is a Toeplitz matrix described by
(4), which contains the coefficients of the matched filter m(t)
at different time instants. Note that the noise samples are
described such that each entry of n has the same statistical
properties. Since the receive filter has a length of 2MN + 1
samples, 3MN unfiltered noise samples in the noise vector
w need to be considered for the description of an interval of
MN samples of the filtered noise n. T is the symbol period.
M and M ′ denote the initial and processing oversampling
rate, respectively (M > M ′). The equivalent channel matrix
H is described as

H = (H′ ⊗ IMN ) blkdiag ([Z1, . . . ,ZNt
]) (INNt

⊗u), (5)

where H′ is an Nr × Nt matrix whose element in the ith
row and jth column corresponds to the channel coefficient

between terminal j and receive antenna i. The vector u is
employed as an oversampling operator defined as the vector
with the size M × 1

u = [0 · · · 0 1]
T
. (6)

The matrix Znt
∈ RMN×MN is a Toeplitz matrix that con-

tains the coefficients of z(t) = p(t) ? m(t) at different time
instants, and is given by

Znt
=


z[nd] z[nd + T

M ] . . . z[nd +NT − 1
M T ]

z[nd − T
M ] z[nd] . . . z[nd +NT − 2

M T ]
...

...
. . .

...
z[nd −NT + 1

M T ] z[nd −NT + 2
M T ] . . . z[nd]

 .
(7)

In the asynchronous system, due to the different transmit time
to the BS each terminal has its own time delay nd resulting in
different Znt .

Let Q(·) represent the 1-bit quantization at the receiver,
the resulting quantized signal yQ is

yQ = Q (y) = Q (R{y}) + jQ (I{y}) , (8)

where R{·} and I{·} get the real and imaginary part, respec-
tively. They are element-wisely quantized to {±1} and scaled
to {± 1√

2
} based on the sign.

3. CAPACITY LOWER BOUND AND DIMENSION
REDUCTION

Similar to the work in [14], we derive the capacity lower
bound of the 1-bit MIMO systems through the Bussgang de-
composition. Based on the derived bound, we propose a dy-
namic oversampling technique to obtain a small number of
samples, which largely contribute to the sum rate, from all
the received quantized samples.

3.1. Bussgang based Sum Rate Capacity

According to the Bussgang’s theorem [15], (8) can be decom-
posed as

yQ = Ay + nq = AHx + An + nq. (9)

The vector nq is the statistically equivalent quantization noise
with covariance matrix Cnq

= CyQ −ACyAH , where CyQ

is obtained through the arcsin law [16]

CyQ =
2

π

(
sin−1(KCR

y K) + jsin−1(KCI
yK)

)
(10)

and
Cy = HHH + σ2

n(INr
⊗GGH). (11)

The matrix A ∈ RMNNr×MNNr is the linear operator chosen
independently from y and is given by

A = CH
yyQC−1y =

√
2

π
K, with K = diag(Cy)−

1
2 ,

(12)
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Fig. 1: System model of multi-user multiple-antenna system with 1-bit ADCs and reduced-rank based oversampling at the receiver

G =


m(−NT ) m(−NT + 1

M T ) . . . m(NT ) 0 . . . 0
0 m(−NT ) . . . m(NT − 1

M T ) m(NT ) . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . m(−NT ) m(−NT + 1
M T ) . . . m(NT )


MN×3MN

(4)

where CyyQ denotes the cross-correlation matrix between the
received signal y and its quantized signal yQ, described by

CyyQ =

√
2

π
KCy. (13)

Letting n′ = An + nq and assuming n′ is Gaussian dis-
tributed, which minimizes the mutual information, the sum
rate capacity lower bound is calculated as

C =
1

N
log2 det(CyQ

C−1n′ )

=
1

N
log2 det

(
I + AHHHA(ACnA + Cnq

)−1
)
.

(14)

3.2. Dimension Reduction

As illustrated in the previous section, the system is initially
oversampled at a higher rate M . In order to maintain low
complexity for the further signal processing, only few sam-
ples are combined and selected based on the reduced-rank
GEVD algorithm.

Assuming the dimension reduction operation can be
mathematically described as a linear transformation with
the matrix ∆ [17], the reduced received signal is

y′Q = ∆yQ, (15)

where ∆ is a matrix with size of M ′NNr ×MNNr. Ac-
cording to (14), the modified capacity lower bound is then

C =
1

N
log2 det(∆CyQ∆H(∆Cn′∆

H)−1). (16)

The optimization problem that corresponds to the design of
the optimal ∆opt that can obtain the highest achievable sum
rates is described as

∆opt = arg max
∆

log2 det(∆CyQ∆H(∆Cn′∆
H)−1).

(17)

Since the determinant is a log-concave function [18] and with
the properties of the determinant, (17) is equivalent to

∆opt = arg max
∆

det(∆CyQ∆H)

det(∆Cn′∆H)
. (18)

According to [19], the problem (18) can be efficiently solved
by the GEVD algorithm, which is summarized in Algorithm
1. In steps 5 and 6, the matrix Λ is a diagonal matrix contain-
ing the eigenvalues and the corresponding eigenvectors are
placed in the matrix Φ. Since the largest eigenvalues contains
more useful information, the eigenvectors corresponding to
these dominant eigenvalues are used to form the matrix ∆H

opt.

Algorithm 1 GEVD algorithm

1: Eigenvalue decomposition: ΦB,ΛB ← Cn′ΦB = ΦBΛB

2: Φ̃B ← Φ̃B = ΦBΛ
− 1

2

B
3: A← A = Φ̃H

B CyQΦ̃B
4: Eigenvalue decomposition: ΦA,ΛA ← AΦA = ΦAΛA
5: Λ← ΛA
6: Φ← Φ = Φ̃BΦA
7: Extract the eigenvectors in Φ related to the M ′NNr

biggest diagonal values in Λ
8: Construct ∆H

opt column-wisely

Compared to the uniform oversampled system, which
does not need the reduction matrix ∆1, the biggest computa-
tional cost of the proposed dynamic oversampling technique
lies in the eigenvalue decomposition in steps 1 and 4, which
is O((MNNr)

3).

1For the uniform oversampled system ∆ is a square matrix. The sum rates
cannot be maximized, when all the samples are used. For this reason ∆ can
be neglected.



4. NUMERICAL RESULTS

In this section, we evaluate the proposed dynamic oversam-
pling technique in terms of the Bussgang-based sum rate ca-
pacity, which is obtained by averaging over results obtained
from 100 independent realizations of the channel matrix H′

in a MIMO system with Nt = 4 and Nr = 64. The delay
of each terminal is uniformly distributed between −T and T .
Each transmission block contains 10 symbols and Gaussian
signaling is considered. The m(t) and p(t) filters are normal-
ized root-raised-cosine (RRC) filters with a roll-off factor of
0.8. The SNR is defined as 10 log( 1

σ2
n

).
We firstly investigate the receiver power consumption of

the dynamic oversampled system versus the number of bits
used by the ADCs. Fig. 2 shows the simplified power con-
sumption as a function of the quantization bits. Based on [20],
without considering the common parts between systems with
an arbitrary number of bits the power consumption at the re-
ceiver can be reduced to

Ptotal ≈ 2Nr(cPAGC + PADC), (19)

where PAGC denotes the power consumption of automatic
gain control (AGC). c is chosen as 0 for 1-bit system and 1
for systems with more-bits. The PADC is calculated as

PADC = FOMw ×Mfn × 2b, b = 1, 2, · · · (20)

where fn is the Nyquist-sampling rate and b denotes the
quantization bits. From [20], PAGC = 2mW, FOMw is 200
fJ/conversion-step at 50 MHz bandwidth and fn is 100 MHz.
With the illustrated figure, we can see that for the system
with M ′ = 2 the dynamic oversampling technique M > M ′

consumes almost the same power as that with the uniform
oversampling technique M = M ′ below 4 bits. This reveals
the receiver power consumption advantage of the proposed
dynamic oversampling technique.
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Fig. 2: Simplified power consumption at the receiver

Furthermore, Fig. 3 makes the comparison of capacity
lower bounds between dynamic and uniform oversampled
systems under the same processing sampling rate M ′ = 2.
Note that for the uniform oversampled system all received
samples are used for further processing. From the results
we can see that the dynamic oversampled system has almost
the same capacity lower bound as the uniform oversampled
system. This important result indicates that the proposed
dynamic oversampling technique can use less processing
samples to achieve the same sum rates as compared to the
standard uniform oversampling technique. Another observa-
tion is that under the same processing sampling rate M ′ = 2
the dynamic oversampled system has a significant perfor-
mance gain as compared to the uniform oversampled system
with M = 2, where the gain achieves its saturation after
M = 4. These observations show the performance advan-
tages of the proposed oversampling technique.
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Fig. 3: Comparison of capacity lower bounds between uniform and dynamic
oversampled systems with the same M ′ = 2

5. CONCLUSION

This work has proposed a dynamic oversampling technique
for asynchronous large-scale MIMO systems with 1-bit quan-
tization at the receiver. We have derived the sum rate lower
bound based on the Bussgang decomposition. Simulation
results have shown that the proposed oversampling technique
can use small number of processing samples to achieve the
same capacity lower bound as the standard uniform oversam-
pling technique while maintaining almost the same power
consumption. Further, with the same number of processing
samples the proposed technique can achieve much higher
sum rates. As an extension of the current work, we will
investigate the advantage of proposed technique in different
system designs, such as minimizing the mean square error of
detected symbols.
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