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Maximum Entropy-Based Interference-plus-Noise
Covariance Matrix Reconstruction for Robust

Adaptive Beamforming
Saeed Mohammadzadeh†, Vı́tor H. Nascimento†, Rodrigo C. de Lamare†† and Osman Kukrer†††

Abstract—To ensure signal receiving quality, robust adaptive
beamforming (RAB) is of vital importance in modern communi-
cations. In this letter, we propose a new low-complexity RAB
approach based on interference-plus-noise covariance matrix
(IPNC) reconstruction and steering vector (SV) estimation. In
this method, the IPNC and desired signal covariance matrices
are reconstructed by estimating all interference powers as well as
the desired signal power using the principle of maximum entropy
power spectrum (MEPS). Numerical simulations demonstrate
that the proposed method can provide superior performance to
several previously proposed beamformers.

Index Terms—Covariance matrix reconstruction, Maximum
entropy method, Robust adaptive beamforming, Spatial power
spectrum.

I. INTRODUCTION

ADAPTIVE beamforming has been intensively devel-
oped for spatial filtering with applications in wire-

less communications, radar and microphone array processing
[1]. However, adaptive beamformers may suffer performance
degradation due to several reasons, which include short data
records, the presence of the signal-of-interest (SOI) in the
training data, or imprecise knowledge of the steering vector
(SV) of the desired signal [2]–[4]. Hence, various techniques
have been developed to improve the performance of adaptive
beamformers in the presence of mismatches. These robust
adaptive beamforming (RAB) techniques can be divided into
the following types: diagonal loading approaches [5], [6], the
eigenspace-based beamformer [7], [8], worst-case optimiza-
tion and SV estimation with presumed prior knowledge [9]–
[11], and estimation of the mismatched SV using Sequential
Quadratic Programming (SQP) [12]. However, RAB designs
based on these approaches have some drawbacks such as their
ad hoc nature, high probability of subspace swap at low signal-
to-noise ratio (SNR) and high computational complexity.

Recently, a new approach to RAB was presented that
removes the influence of the SOI component from the sam-
ple covariance matrix by reconstructing the interference-plus-
noise-covariance (IPNC) matrix [13]–[19]. The IPNC matrix
in [13] is reconstructed based on the Capon spectral estima-
tor by integrating over an angular sector that excludes the
direction-of-arrival (DoA) of the SOI. In [14], a computation-
ally efficient algorithm via low complexity shrinkage-based
mismatch estimation (LOCSME) is proposed followed by the
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introduction of the orthogonal Krylov subspace projection
mismatch estimation (OKSPME) technique [20]. The approach
in [15] makes use of prior information about the angular
sections of the signals and combines projection methods to
obtain more precise estimates of the IPNC matrix, but its
performance degrades with the increase of the number of
interferers. Later, in [16] an algorithm is developed using
spatial power spectrum sampling (SPSS), which has lower
computational complexity, but its performance is degraded
as the number of sensors is decreased. In [18] a procedure
analogous to those of [13] and [3] is used to reconstruct the
IPNC matrix and to estimate the desired signal SV. However,
the accuracy of the interference SV estimate is sensitive to the
value of an ad hoc parameter. The results of [13] indicate that
the resulting Capon beamformer achieves better performance
in the case of SOI array SV errors compared to the previous
approaches. However, the analysis in [13] did not account
for typically present interference array SV errors or arbitrary
SOI array SV mismatches [21]. Moreover, the accuracy of
the Capon spatial spectrum degrades severely when coherent
signals (with line spectra) exist [22].
The main contribution of this paper is to develop a novel RAB
approach that achieves nearly optimal performance by address-
ing the inaccurate covariance matrix construction problem as
well as errors due to DoA mismatches and other array im-
perfections. The idea is based on IPNC matrix reconstruction
and the desired signal SV estimation using maximum entropy
power spectrum (MEPS), a method that, although available for
a long time, was not yet applied to beamforming. In contrast
to prior work with IPNC, we apply MEPS to reconstruct
the IPNC matrix by integrating over the angular sector of
interference-plus-noise as well as the desired signal region.
Then, a desired signal SV estimate is introduced to replace
the SOI’s presumed SV. The proposed approach outperforms
existing techniques with less computational complexity.

II. PROBLEM BACKGROUND

Consider a uniform linear antenna array (ULA) of M
isotropic sensors spaced by distance d receiving signals from
far-field narrowband sources. The array observation vector at
time t can be modeled as

x(t) = s(t)a(θs) + i(t) + n(t), (1)

where the signals xl(t) observed at each antenna are collected
in the vector x(t) = [x0(t) . . . xM−1(t)]T , and (·)T is the
transpose while i(t), n(t), s(t) denote the components of the
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interference, the zero-mean Gaussian noise vector and the
waveform of the SOI, respectively. For a ULA with M sensors
the SV corresponding to the DoA of the SOI is

a = a(θs) =
[
1, e−j2πd̄ sin θs , · · · , e−j2π(M−1)d̄ sin θs

]T
, (2)

where d̄ = d/λ, λ is the wavelength. Assuming that the SV
a is known, then for a given beamformer weight vector w,
the beamformer’s performance is measured using the output
signal-to-interference-plus-noise ratio (SINR) as follows

SINR =
σ2

s |wHa|2

wHRi+nw
, (3)

where σ2
s is the desired signal power, Ri+n = E

{
(i(t) +

n(t))(i(t) + n(t))H
}
∈ CM×M is the IPNC matrix, E{·}

denotes statistical expectation and (·)H stands for Hermi-
tian transpose. In order to achieve the maximum SINR,
the interference-plus-noise output power is minimized while
maintaining a distortionless response for the desired signal,

min
w

wHRi+n w s.t. wHa = 1. (4)

The solution to (4) yields the optimal beamformer given by

wopt =
R−1

i+na
aHR−1

i+na
. (5)

Moreover, the theoretical array covariance matrix is denoted as
R = Rs + Ri+n, where Rs = σ2

s aaH is the theoretical desired
signal covariance matrix. This relation and the constraint
wHa = 1 imply that Ri+n can be substituted by R in (4) and
(5) without changing the final result [1]. Since in practice, the
exact IPNC matrix, Ri+n and array covariance matrix, R are
unavailable even in signal-free applications, they are replaced
by the sample covariance matrix R̂ = (1/K)

∑K
t=1 x(t)xH(t),

where K is the number of snapshots.
Both the direction of the SOI and the SV for a given

direction are known imperfectly, due to errors in estimating
θs and on positioning and calibration of the sensor array.

III. THE PROPOSED MEPS-IPNC ALGORITHM

Our approach is based on MEPS to reconstruct the
interference-plus-noise covariance (MEPS-IPNC) matrix. We
develop a procedure to reconstruct the IPNC matrix and then
devise a low-complexity approach to estimate the actual SV.

A. Interference-plus-noise covariance matrix reconstruction

One of the limitations of the classical approach to spec-
trum estimation is that, for an observation vector of length
M , the autocorrelation sequence can only be estimated for
displacements |k| < M . Thus, it is set to zero for |k| ≥ M .
Since many signals of interest have autocorrelation that is
nonzero for |k| ≥ M , this windowing may significantly limit
the accuracy of the estimated spectrum and resolution. This
is particularly true in the case of narrowband processes that
have autocorrelation that decays slowly with k.
Given the autocorrelation rx(k) = E

{
xl(t)xl+k(t)

}
of a

spatially stationary process for displacements |k| ≤ p, the
problem that we wish to address is how to extrapolate rx(k)

for |k| > p = M − 1. Denoting the extrapolated values by
re(k), we can express the power spectrum in terms of the
spatial frequency ν as follows

Px(ν) =

p∑
k=−p

rx(k)e−jkν +
∑
|k|>p

re(k)e−jkν . (6)

It is clear that Px(ν) should be real and non-negative for all
ν. However, these constraints are not sufficient to guarantee
a unique extrapolation. Therefore, [23] proposes to perform
the extrapolation in such a way as to maximize the entropy
of the process. Since entropy is a measure of uncertainty, a
maximum entropy extrapolation is equivalent to finding the
autocorrelation sequence, re(k), that makes x(t) as white as
possible. For a Gaussian random process with power spectrum
Px(ν), the entropy is [24]

H(x) =
1

2π

∫ π

−π
lnPx(ν)dν. (7)

Therefore, the MEPS of rx(k) is the one that maximizes
(7) subject to the constraint that the inverse discrete time
Fourier transform (IDTFT) of Px(ν) equals the given set of
autocorrelations for |k| ≤ p

rx(k) =
1

2π

∫ π

−π
Px(ν)ejkνdν; |k| ≤ p, (8)

and the values of re(k) may be found by

∂H(x)

∂r∗e (k)
=

1

2π

∫ π

−π

1

Px(ν)
.
∂Px(ν)

∂r∗e (k)
dν = 0; |k| > p. (9)

From (6) we see that

∂Px(ν)

∂r∗e (k)
= ejkν , (10)

which, when substituted into Eq.(9), yields

1

2π

∫ π

−π

1

Px(ν)
ejkνdν = 0; |k| > p. (11)

Defining Qx(ν) = 1/Px(ν), (11) states that the IDTFT of
Qx(ν) is a finite-length sequence, equal to zero for |k| > p,

qx(k) =
1

2π

∫ π

−π
Qx(ν)ejkνdν = 0; |k| > p, (12)

Therefore,
Qx(ν) =

1

Px(ν)
=

p∑
k=−p

qx(k)e−jkν , (13)

and it follows that MEPS is an all-pole power spectrum

P̂meps(ν) =
1∑p

k=−p qx(k)e−jkν
. (14)

Using the spectral factorization theorem [25], it follows that

P̂meps =
|b(0)|2

Cp(ejν)CH
p (ejν)

=
|b(0)|21 +

p∑
k=1

cp(k)e−jkν
2
, (15)
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where Cp(e
jν) = 1 +

∑p
k=1 cp(k)e−jkν . Alternatively, in

terms of the vectors cp =
[
1, cp(1), · · · , cp(p)

]T
and e =[

1, ejν , · · · , ejpν
]T

, MEPS may be written as

P̂meps =
|b(0)|2eHcp

2 . (16)

Having determined the form of MEPS, we must find the
coefficients b(0) and cp(k). Due to the constraint given in
Eq. (8), these coefficients must be chosen in such a way that
the IDTFT of P̂meps produces an autocorrelation sequence that
matches the given values of rx(k) for |k| ≤ p.
Therefore, it can be easily shown that the coefficients cp(k)
are the solution to the autocorrelation normal equations [26]
rx(0) r∗x(1) · · · r∗x(p)
rx(1) rx(0) · · · r∗x(p− 1)

...
...

...
rx(p) rx(p− 1) · · · rx(0)




1
cp(1)

...
cp(p)

 = εp


1
0
...
0

 ,
where εp = |b(0)|2. Therefore this equation is equivalent to

R̂cp = εpu1 ⇒ cp = εpR̂
−1

u1, (17)

where u1 = [ 1 0 ··· 0 ]T and since uT1 cp = 1, it follows that
εp = 1/uT

1 R̂
−1

u1. Letting ν = 2πd̄ sin θ implies e = a(θ),
and the power spectrum estimate of maximum entropy is

P̂meps =
1

εp
(
aH(θ)R̂

−1
u1uH

1 R̂
−H

a(θ)
) . (18)

In order to find the MEPS-IPNC matrix, it is assumed that
Θ̄ ⊂ [−π, π] is a set which contains the interference-plus-noise
region and likewise the desired signal is located in the angular
sector Θ, which can be obtained using low resolution direction
finding methods. Exploiting the MEPS estimate (18), the IPNC
matrix can be reconstructed by numerically evaluating

R̂ipn =

∫
Θ̄

P̂mepsa(θ)aH(θ)dθ. (19)

Sampling Θ̄ uniformly with L = αM sampling points spaced
by ∆θ (our simulations show that α ≈ 5 is enough), (19) can
be approximated by

R̂ipn ≈
L∑
i=1

a(θi)aH(θi)

εp
(
aH(θi)R̂

−1
u1uH

1 R̂
−H

a(θi)
)∆θ. (20)

B. Desired Signal Steering Vector Estimation

The focus of some recent adaptive beamforming methods is
on using Capon spectral estimation to compute the power from
the direction of the signal, which has some disadvantages.
Let a be the true SV for the SOI, and ā be the presumed
one. The Capon spatial spectrum estimator [27] using the true
SV, 1/aHR̂

−1
a, can be approximated as the power of SOI-

plus-noise. Since the Capon estimator has good resolution in
spectrum estimation, 1/āHR̂

−1
ā will deviate from 1/aHR̂

−1
a

as long as mismatches between a and ā occur. If the mismatch
is large enough, 1/āHR̂

−1
ā can be approximated as the power

of noise only.
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Fig. 1. Power spectrum of MEPS versus Capon estimators.

In practice, it is difficult to obtain the actual SV by simply
using the presumed DoA of the signal because of propagation
effects. Hence, the desired signal covariance matrix is recon-
structed based on MEPS by numerically evaluating

R̂s ≈
S∑
i=1

a(θsi)aH(θsi)

εp
(
aH(θsi)R̂

−1
u1uH

1 R̂
−H

a(θsi)
)∆θs, (21)

where now we sampled Θ uniformly with S sampling points
spaced by ∆θs, so that {a(θsi)|θsi ∈ Θ} lies within the range
space of R̂s. Note that in practice S can be chosen to be less
then M , since Θ is usually a small sector. To improve the
estimation accuracy of the desired signal SV, we propose a
low-complexity algorithm to correct the presumed SV based
on the fact that the product of the desired signal covariance
matrix by any vector yields a vector proportional to the desired
signal’s SV. Hence, we can obtain an improved estimate for
the desired signal SV as

â = R̂sā ' (σ2
s aaH)ā ' σ2

s (aHā)a, (22)

which is proportional to the desired signal’s SV provided that
ā is not orthogonal to a. Note that the proposed estimated array
SV is accurate in the case of large look direction errors as well
as random SV mismatches and local scattering imperfections
as long as the choice of Θ separates well the desired signal
and the interference regions, since (22) corresponds to one
step of the power method [28]. Finally, we obtain the robust
beamformer by substituting the reconstructed IPNC matrix,
(19), and estimated desired SV, (22), back into (5) as follows

wprop =
R̂
−1

ipnâ

âHR̂
−1

ipnâ
. (23)

The computational complexity of MEPS-IPNC is O(M2L),
where L is a small multiple of M . The solution of the
QCQP problem in [13] to obtain the optimal weight vector has
complexity of at least O(M3.5), while the beamformer in [7]
has a complexity of O(KM) +O(M3) and the reconstructed
IPNC matrices in [14] and [16] have a complexity of O(M3)
(in the latter cases, because the eigenvalue decomposition of
R̂ is used.) However, their performance is significantly worse
than that of MEPS-IPNC, as shown in the next section. Also,
the cost of the beamformer in [18] is O(max(M2S,M3.5)).
Note that the complexity of MEPS-IPNC is similar to that of
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Fig. 2. SINR vs SNR a) Look Direction b) Coherent Local Scattering

the other methods for computing R̂ipn, but the complexity for
computing â is smaller, since that depends on S < M and on
a single matrix-vector multiplication.

IV. SIMULATIONS

In this section, a ULA with M = 22 omnidirectional sensors
is used. The additive noise is modeled as spatially white
Gaussian with zero mean and unit variance. The angles of
incidence of the desired signal and two interfering sources are
θ̄s = 3◦, −20◦ and 15◦ respectively. The input interference to
noise ratios (INRs) of the two interferers are both set to 30 dB.
We employ L = 100, S = 20, fixed SNR at 20 dB and K = 30
snapshots, and perform 100 Monte-Carlo runs. MEPS-IPNC is
compared with LOCSME [14], the modified projection beam-
former [7], the reconstruction-estimation based beamformer
[13], the beamformer in [29], the beamformer in [16] and the
beamformer in [18]. The angular sector of the desired signal is
set to be Θ = [θ̄s−6◦, θ̄s +6◦] where the interference angular
sector is Θ̄ = [−90◦, θ̄s − 6◦) ∪ (θ̄s + 6◦, 90◦] and the bound
for the beamformer in [18] is set as ε =

√
0.1.

A. Performance of Power Spectrum

We consider a scenario in which the SNR is fixed at −5
dB. Fig. 1 compares the power spectrum of Capon and MEPS
methods versus the DoA of the signals. It can be seen that
MEPS can effectively retain the power of SOI as well as
maintain those of interferences. In fact, high resolution of
MEPS comes from extrapolating the partially known autocor-
relation function, rx(k), beyond the last known lag value in a
manner that maximizes the entropy of the corresponding power
spectrum at each step of the extrapolation [30]. Excellent
power spectrum estimates are obtained from relatively short
time series data record lengths.

B. Random Signal Look Direction mismatch

In the first example, the impact of random signal look
direction mismatch is considered. We assume that the random
direction mismatches of the desired signal and the interfer-
ers are uniformly distributed in [−6◦, 6◦]. This means that
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the actual SOI DoA is uniformly distributed in [−3◦, 9◦],
and the DoAs of the interferers are uniformly distributed
in [−26◦,−14◦] and [9◦, 21◦]. Note that the DoAs of the
desired signal and interferences change from run to run while
remaining constant over samples. Figs. 2(a) and 3(a) illustrate
the SINR performance versus the SNR and snapshots under
the look direction case. MEPS-IPNC almost attains the optimal
output SINR in both low and high SNRs even when there exist
large look direction mismatches, already with only K = 22
snapshots. The excellent performance of MEPS-IPNC derives
from its high accuracy estimate of the IPNC matrix and the
SV of the SOI, which enhance the robustness of MEPS-
IPNC against random look direction errors for all numbers of
snapshots. MEPS-IPNC outperforms the others and is close to
the optimum SINR, with very low variance.

C. Effect of the Coherent Local Scattering errors

In this scenario, the impact of the desired signal SV mis-
match due to coherent local scattering [31] on array output
SINR is considered. In this example, the presumed signal
is a plane wave impinging from θ̄s = 3◦, whereas the
actual spatial signature is formed by five signal paths as
ã = ā +

∑4
i=1 e

jϕid(θi), where ā is the direct path and
corresponds to the assumed signal SV, and d(θi) represents the
ith coherently scattered path with the direction θi, (i=1,2,3,4)
which are randomly distributed in a Gaussian distribution with
mean θ̄s and standard deviation 2◦. Also, the parameters ϕi
denote the path phases which are drawn uniformly from the
interval [0, 2π] in each simulation run. Note that θi and ϕi
(i=1,2,3,4) only change from run to run while remaining fixed
from snapshot to snapshot. Figs. 2(b) and 3(b) depict the
SINR performance versus SNR and snapshots. Compared to
the look direction results, MEPS-INPC is able to outperform
the remaining robust beamformers over a range of snapshots
and with less fluctuation in the estimates. The reason for this
performance is the combined use of accurate estimates of the
IPNC matrix and of the steering vector mismatch.
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V. CONCLUSION

In this letter, a new low-complexity approach to RAB is
proposed based on highly accurate estimation of the IPNC
matrix and the actual SV using MEPS. Simulations demon-
strate that the proposed algorithm outperforms some of the
recent methods in the literature.
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