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ABSTRACT
In this paper, we propose an oversampling based low-resolution
aware least squares channel estimator for large-scale multiple-
antenna systems with 1-bit analog-to-digital converters on each
receive antenna. To mitigate the information loss caused by the
coarse quantization, oversampling is applied at the receiver, where
the sampling rate is faster than the Nyquist rate. We also character-
ize analytical performances, in terms of the deterministic Cramér-
Rao bounds, on estimating the channel parameters. Based on the
correlation of the filtered noise, both the Fisher information for
white noise and a lower bound of Fisher information for colored
noise are provided. Numerical results are provided to illustrate the
mean square error performances of the proposed channel estimator
and the corresponding Cramér-Rao bound as a function of the
signal-to-noise ratio.

Index Terms— Large-scale multiple-antenna systems, 1-bit
quantization, oversampling, channel estimation, Cramér-Rao bound

I. INTRODUCTION
Large-scale multiple-input multiple-output (MIMO) systems are

regarded as a promising candidate for the next generation communi-
cation systems, as they offer significant increases in data throughput
without an additional increase in bandwidth or transmit power
[1], [2]. However, the use of more antennas at the base station
(BS) will bring more challenges, such as system complexity and
pilot contamination [3]. One problem faced is the high energy
consumption of the system while using high speed, high precision
(e.g. 8-12 bits) analog-to-digital converters (ADCs) at each front-
end (RF). A possible solution is to use a number of ultra low cost
and ultra low precision ADCs (1-3 bits) [4], [5], [6]. These low
cost ADCs can largely reduce the energy consumption of the BS.
The performance loss caused by the coarse quantization can be
partially recovered by using some adequate compensation methods
like oversampling. Moreover, the low cost ADCs can also be used
in millimeter-Wave (mmWave) systems, which can achieve larger
bandwidths of 500 MHz or more. The works in [7], [8], [9] have
studied the channel estimation, signal detection, achievable rate and
precoding techniques in such systems.

Currently, large-scale MIMO systems with 1-bit ADCs at the
RF have attracted much attention, as they can largely reduce the
receiver energy consumption. Recent studies include precoding
[10], channel estimation [11], capacity analysis [12] and iterative
detection and decoding (IDD) technique [13]. To reduce the quanti-
zation errors caused by the 1-bit quantizer, oversampling is applied
at each receive antenna, where the sampling rate is significantly
higher than the Nyquist rate. The authors in [14] have studied the

situation that sampling is faster than symbol rate (FTSR) in an
uplink massive MIMO system with 1-bit ADCs. For acquiring the
channel state information (CSI), they develop a Bussgang-based
linear minimum mean squared error (BLMMSE) channel estimator
for the oversampled system, which is based on impractical noise
assumptions and consumes a higher computational cost.

In this paper, we propose a low-resolution aware least squares
(LRA-LS) channel estimator for uplink massive MIMO systems
with 1-bit quantization and oversampling at the receiver based
on the Bussgang theorem. In particular, we develop an adaptive
recursion to estimate the autocorrelation of the channel vector
required in the expression of the LRA-LS estimator, which can also
be used in the BLMMSE channel estimator. For non-oversampled
systems, we analyze the Fisher information (FI) and present the
Cramér-Rao Bound (CRB) for any unbiased estimator. In contrast
to the noise assumption in [14], where it is assumed that the
filtered noise samples are uncorrelated, we consider correlated noise
samples, which is important for oversampled systems. Since the
exact expression of the FI is still an open problem, we present
lower bounds of the FI.

The rest of the paper is organized as follows. The system model
is shown in section II. In section III, we illustrate the FI for both
non-oversampled and oversampled 1-bit MIMO systems. In section
IV, we give a short derivation of the proposed oversampling based
LRA-LS channel estimator. In section V, the simulation results are
presented and we conclude the paper in section VI.

The following notations are used throughout the paper. a is a
scalar, a is a vector, A is a matrix. The n × n identity matrix is
denoted by In and 0n is a n × 1 all zeros column vector. We use
diag(A) to denote a diagonal matrix only containing the diagonal
elements of A. AT , AH , A∗ and A+ represent transpose, conjugate
transpose, complex conjugate and pseudo-inverse, respectively. ⊗
denotes the Kronecker product. [a]k gets the kth element from a.
[·]R and [·]I represents the real and imaginary part, respectively.

II. SYSTEM MODEL
Consider the uplink of a single-cell multi-user large-scale MIMO

system, as shown in Fig. 1, where there are Nt single-antenna
terminals and the BS is equipped with Nr receive antennas. For
the large-scale MIMO system we have Nr � Nt . The received
oversampled signal y is

y = Hx + n, (1)

where x ∈ CNNt×1 contains N blocks of transmitted symbols.
Each symbol is generated by independent and identically distributed
(i.i.d.) random variable with zero mean and unit variance. The
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Fig. 1: System model of 1-bit multi-user multiple-antenna system with oversampling at the receiver

vector n ∈ CMNr N×1 contains filtered oversampled noise samples
expressed by

n =
(
INr ⊗ G

)
w. (2)

The entries of w are zero-mean i.i.d. complex Gaussian random
variables, which we denote by CN

(
03MNr N , σ

2
nI3MNr N

)
. Since

the receive filter length is 2MN+1, more samples (e.g. 3MN) in w
need to be considered to have the same statistical property of each
entry in n. G is a Toeplitz matrix described by (3), which contains
the coefficients of the matched filter m(t) at different time instants,
where the symbol period is represented by T .

The equivalent channel matrix H ∈ CMNr N×NNt is described
as

H =
(
INr ⊗ Z

)
U

(
H′ ⊗ IN

)
, (4)

where H′ ∈ CNr×Nt is the channel matrix for the non-oversampled
systems and U is the oversampling matrix described by

U = INr N ⊗ u = INr N ⊗ [0 · · · 0 1]T1×M . (5)

Z ∈ RMN×MN is a Toeplitz matrix with the form

Z =


z(0) z( TM ) . . . z(NT − 1

M T)
z(− T

M ) z(0) . . . z(NT − 2
M T)

...
...

. . .
...

z(−NT + 1
M T) z(−NT + 2

M T) . . . z(0)


,

(6)
where z(t) is the convolution of the pulse shaping filter p(t) and
the matched filter m(t). In particular, M = 1 refers to the non-
oversampling case.

Let Q(.) represent the 1-bit quantization function, the received
quantized signal yQ is

yQ =
1
√

2
Q (y) =

1
√

2
Q

(
yR

)
+ j

1
√

2
Q

(
yI

)
, (7)

The real and imaginary parts are element-wisely quantized to {±1}
based on the sign, respectively.

III. FISHER INFORMATION AND CHANNEL
ESTIMATION FOR 1-BIT MIMO

This section firstly analyzes the FI about the unknown channel
parameters and gives deterministic CRBs on the variance of any
unbiased channel estimator for both non-oversampled and over-
sampled 1-bit MIMO systems. The proposed LRA-LS channel
estimator and the adaptive estimation of the autocorrelation matrix
of the channel vector is then described in the last part.

The system model in (1) can be vectorized as

y = (xT ⊗ INr NM )vec(H) + n
= [xT ⊗ INr ⊗ Z(IN ⊗ u)]vec(H′ ⊗ IN ) + n

(8)

with the property of vectorization and Kronecker products

vec(H′ ⊗ IN ) =[
INt ⊗

(
e1 ⊗ INr ⊗ e1 + · · · + eN ⊗ INr ⊗ eN

) ]
vec(H′),

(9)
where en is an all zeros column vector except that the nth element
is one. Eq.(8) can be written in the following simplified form

y = Φvec(H′) + n = Φh′ + n, (10)

where Φ ∈ CMNNr×Nr Nt is called the equivalent transmit matrix.
To calculate the FI, we rewrite (10) in the real-valued form as[

yR
yI

]
=

[
ΦR −ΦI

ΦI ΦR

] [
h′R

h′I

]
+

[
nR

nI

]
. (11)

Considering the unknown parameter vector h̃′ = [h′R; h′I ] and
with the independence of yR and yI , the FI matrix [15] of the
quantized signal is defined as

FyQ (h̃′) = FyR
Q

(h̃′) + FyI
Q

(h̃′), (12)

where

[FyR/I
Q

(h̃′)]i j = EyR/I
Q
|h̃′


∂ ln p(yR/I

Q
| h̃′)

∂[h̃′]i

∂ ln p(yR/I
Q
| h̃′)

∂[h̃′]j


(13)

with [h̃′]i and [h̃′]j being the elements of h̃′. The variance of any
unbiased estimator ˆ̃h′ is lower bounded by

var{[ ˆ̃h′]i} ≥ [F−1
yQ (h̃

′)]ii . (14)

III-A. Fisher Information for Non-oversampled Systems

For non-oversampled system, i.e, M = 1, the noise vector n
contains white Gaussian noise samples with covariance matrix
Cn = σ2

nINNr . The log-likelihood function can be expressed as

ln p(yQ | h̃′) =
NNr∑
k=1

[
ln p([yR

Q
]k | h̃′) + ln p([yI

Q
]k | h̃′)

]
(15)

with

p
(
[yR
Q
]k =

1
√

2
| h̃′

)
= Q

(
−
[ΦRh′R − ΦIh′I ]k

σn/
√

2

)
(16)

p
(
[yR
Q
]k = −

1
√

2
| h̃′

)
= Q

(
[ΦRh′R − ΦIh′I ]k

σn/
√

2

)
(17)

p
(
[yI
Q
]k =

1
√

2
| h̃′

)
= Q

(
−
[ΦIh′R + ΦRh′I ]k

σn/
√

2

)
(18)
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p
(
[yI
Q
]k = −

1
√

2
| h̃′

)
= Q

(
[ΦIh′R + ΦRh′I ]k

σn/
√

2

)
, (19)

where Q(x) = 1√
2π

∫ ∞
x

exp(−u2

2 )du. With the derivative of Q(x)
function, the FI for the real part is given by

[FR
yQ (h̃

′)]i j =

NNr∑
k=1
−E

{
∂2 ln p([yR

Q
]k | h̃′)

∂[h̃′]i∂[h̃′]j

}

=
1
πσ2

n

NNr∑
k=1

exp(− [Φ
Rh′R−ΦI h′ I ]2

k

σ2
n/2

)
∂[ΦRh′R−ΦI h′ I ]k

∂[h̃′]i
∂[ΦRh′R−ΦI h′ I ]k

∂[h̃′] j

Q
(
[ΦRh′R−ΦI h′ I ]k

σn/
√

2

)
Q

(
−
[ΦRh′R−ΦI h′ I ]k

σn/
√

2

) .

(20)
The derivation for the imaginary part is analogous.

III-B. Fisher Information for Oversampled Systems
When M ≥ 2 the equivalent noise vector n contains correlated

noise samples. Computing the exact form of p(yR/I
Q
| h̃′) is not

available or it is too difficult to compute. Instead, the authors in
[16] have given a lower bound of the FI, which is based on the
first and second order moments

FyR/I
Q

(h̃′) ≥ ©«
∂µyR/I

Q

∂h̃′
ª®¬
T

C−1
yR/I
Q

©«
∂µyR/I

Q

∂h̃′
ª®¬ = F̃yR/I

Q

(h̃′), (21)

where the equality holds for M = 1. Since the lower-bounding
technique is identical for the real and the imaginary part, we present
only the derivation of F̃yR

Q

(h̃′). Based on [17] [18], the mean value
of the kth received symbol is given by

[µyR
Q

]k =
1
√

2
P

(
[yR
Q
]k = +1 | h̃′

)
−

1
√

2
P

(
[yR
Q
]k = −1 | h̃′

)
=

1
√

2

[
1 − 2Q

(
[ΦRh′R − ΦIh′I ]k√

[Cn]kk/2

)]
,

(22)
The derivative of (22) is

∂[µyR
Q

]k

∂[h̃′]i
=

2exp
(
−
[ΦRh′R−ΦI h′ I ]2

k

[Cn]kk

)
∂[ΦRh′R−ΦI h′ I ]k

∂[h̃′]i√
2π[Cn]kk

. (23)

The diagonal elements of the covariance matrix are given by

[CyR
Q

]kk =
1
2
− [µyR

Q

]2k, (24)

while the off-diagonal elements are calculated as

[CyR
Q

]kn =P(zk > 0, zn > 0) + P(zk ≤ 0, zn ≤ 0)

−
1
2
− [µyR

Q

]k [µyR
Q

]n,
(25)

where [zk, zn]T is a bi-variate Gaussian random vector[
zk
zn

]
∼ N

( [
[ΦRh′R − ΦIh′I ]k
[ΦRh′R − ΦIh′I ]n

]
,

1
2

[
[Cn]kk [Cn]kn
[Cn]nk [Cn]nn

] )
.

The lower bound for the imaginary part is derived in the same way.

III-C. Oversampling based LRA-LS Channel Estimation

In each uplink transmission block pilots are located before the
data symbols. During the training phase, all terminals simultane-
ously transmit τ pilot sequences to the BS. Eq.(10) yields

yp = Φph′ + np . (26)

In particular, for the 1-bit quantization and with the Bussgang
theorem (26) can be decomposed as

yQp
= Q(Φph′ + np) = Φ̃ph′ + ñp, (27)

where Φ̃p ∈ C
MτNr×NtNr = ApΦp and ñp ∈ C

MτNr×1 =
Apnp + nq . The vector nq is the statistically equivalent quantizer
noise. The matrix Ap ∈ R

MτNr×MτNr is the linear operator
chosen independently from yp , which yields

Ap = CH
ypyQp C−1

yp
=

√
2
π

diag
(
Cyp

)− 1
2
, (28)

where CypyQp denotes the cross-correlation matrix between the
received signal yp and the quantized signal yQp

[19]

CypyQp =

√
2
π

diag(Cyp )
− 1

2 Cyp . (29)

Cyp is the auto-correlation matrix of yp , as follows:

Cyp = ΦpRh′ΦH
p + σ

2
n

(
INr ⊗ GGH

)
. (30)

Based on the equivalent linear model (27), the LS estimate of h′
is given by

ĥ′LS = arg min
h̄′

(yQp
− Φ̃p h̄′)H (yQp

− Φ̃p h̄′)

= (Φ̃H
p Φ̃p)

−1Φ̃H
p yQp

.
(31)

In practice, Rh′ = E{h′h′H } is not known at the receiver, which
is a limitation for the BLMMSE channel estimator. We propose an
adaptive technique to recursively estimate it as

R̂h′[n + 1] = λR̂h′[n] + ĥ′[n]ĥ′[n]H , 1 ≤ n ≤ τ, (32)

where λ is the forgetting factor and ĥ′[n] is the channel estimate
at time instant n. Consider the system model

yQ [n] = Q(Hx[n] + n[n])

= Q
(
(xT [n] ⊗ INr ⊗ Z′u)h′ + n[n]

)
,

(33)

where yQ [n], x[n] and n[n] are column vectors with size MNr ×1,
Nt × 1 and MNr × 1, respectively. Z′ ∈ RM×M is a simplified
version of Z. The instantaneous estimate of h′ is calculated as

ĥ′[n] =
(
xT [n] ⊗ INr ⊗ Z′u

)+
yQ [n]. (34)



The initial guess of R̂h′[1] is an all-zeros matrix. Note that the
proposed LRA-LS channel estimator is a biased estimator. While
calculating the Cramér-Rao upper bound, it should apply as follows

∂E{ ˆ̃h′LS}
∂h̃′

(
F̃−1

yQ (h̃
′)
∂E{ ˆ̃h′LS}

∂h̃′

)T
. (35)

Instead of directly calculating the gradient of expectation with
respect to the channel vector, we numerically evaluate this gradient,
since there is an adaptive estimation technique inside the channel
estimator.

IV. NUMERICAL RESULTS
This section presents simulation results of the proposed over-

sampling based LRA-LS channel estimation algorithm. We have
used QPSK as the modulation scheme. The m(t) and p(t) filters
are normalized Root-Raised-Cosine (RRC) filters with a roll-off
factor of 0.8. The channel is assumed to experience block fading
and Ch′ = INr Nt . The forgetting factor λ is set to 0.91. The
pilot sequences are orthogonal. The signal-to-noise ratio (SNR) is
defined as 10 log( Nt

σ2
n
). Fig. 2 shows the normalized mean square

error (NMSE) performance of the proposed channel estimator and
the analytical upper bound of CRB. When using the LRA-LS
channel estimator, there is a 2 dB performance gain of the over-
sampled system (M = 2 or 3) compared to the non-oversampled
system (M = 1). The upper bound of CRB is calculated based
on the corresponding lower bound of FI. Fig. 3 shows the NMSE
performances of the system with different lengths of pilot symbols
at SNR=0dB, where the proposed channel estimator approaches
the performance of the upper bound of CRB. In the simulations we
have chosen τ = 40 as the trade-off between system complexity and
estimation performance. The symbol error rate (SER) performances
of the oversampled system with estimated CSI (channel state
information) and perfect CSI are shown in Fig. 4, where the sliding
window based receiver with window length 3 [20] is applied in the
system.
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Fig. 2: Nt = 4 and Nr = 16. NMSE comparison between different
oversampling factors with τ = 40.

V. CONCLUSION
This work has proposed the LRA-LS channel estimator for

uplink large-scale MIMO systems with 1-bit quantization and
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Fig. 3: Nt = 4 and Nr = 16. NMSE comparison as a function of pilot
length when SNR = 0dB.

0 5 10 15 2010−3

10−2

10−1

100

Estimated CSI
Perfect CSI

SNR (dB)

SE
R

M=1
M=2
M=3

Fig. 4: Nt = 4 and Nr = 16. SER comparison for different oversampling
factors when τ = 40.

oversampling at the receiver. We have further given analytical
performance of the system in terms of the FI. For the non-
oversampled system, the equivalent noise vector n contains white
noise samples and the lower bound of FI is the same as the actual
FI. The simulation results have shown that the proposed channel
estimator in oversampled systems achieves better performance than
that of non-oversampled systems. F
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